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Abstract. The well-known greedy triangulationGT(S) of a finite point setS is obtained by inserting compatible
edges in increasing length order, where an edge is compatible if it does not cross previously inserted ones.
Exploiting the concept of so-called light edges, we introduce a definition ofGT(S) that does not rely on the length
ordering of the edges. Rather, it provides a decomposition ofGT(S) into levels, and the number of levels allows
us to bound the total edge length ofGT(S). In particular, we show|GT(S)| ≤ 3 · 2k+1|MWT(S)|, wherek is the
number of levels andMWT(S) is the minimum-weight triangulation ofS.
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1. Introduction

A triangulationof a given setS of n points in the plane is a maximal set of non-crossing
line segments (callededges) whose both endpoints belong toS. Besides the Delaunay
triangulation and the minimum-weight triangulation, the greedy triangulation (GT) is among
the three most prominent ones. It is obtained by inserting compatible edges in increasing
length order, where an edge is compatible if it does not cross previously inserted ones.
Various algorithms for computing the GT are known, and the GT has been used in several
applications. See, e.g., (Dickerson et al., 1994) for a short history.

One use of the greedy triangulation is a length approximation to the minimum-weight
triangulation (MWT). For a given point setS, the MWT minimizes the total edge length for
all possible triangulations ofS. Unfortunately, there are no known efficient algorithms for
computing a MWT for general point sets. Therefore, efficiently computable approximations
to the MWT are of importance.

Although the GT tends to be short in practical applications, and is provably short for
uniformly distributed point sets (Levcopoulos and Lingas, 1992) and for point sets in
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convex position (Levcopoulos and Lingas, 1987), its worst-case length behaviour is fairly
bad. The GT can be a factor ofÄ(

√
n) longer than the MWT; see (Levcopoulos, 1987).

Only very recently, a matching upper bound has been proved (Levcopoulos and Krznaric,
1996).

In this note, we prove an upper bound of the form|GT(S)|≤ ck · |MWT(S)|, whereck

is a constant depending on the shape ofS but not on its size. In Section 2, we introduce
a decomposition ofGT(S) into k disjoint sets of edges, calledlevels, where the parameter
k≥ 1 results from the shape ofS. The level decomposition provides an alternative way of
viewing, or defining,GT(S) without having at hands the sorted list of edges spanned byS.
It is based on the concept oflight edges, introduced in (Aichholzer et al., 1996), and allows
us to gain more insight into the structure ofGT(S). In particular, we showck≤ 3 · 2k+1 for
k≥ 2 in Section 3. This generalizes the resultc1= 1 in (Aichholzer et al., 1996) and implies
that a GT with constantly many levels is a constant approximation to the MWT. Section 4
studies the number of levels in a GT and offers a short discussion of the presented topic.

As we have learned recently, level decompositions of GTs have been considered inde-
pendently in (Jansson, 1995), for the sake of an efficient parallel computation of greedy
triangulations. An improved length bound of the form|GT(S)|≤O(k)·|MWT(S)| appeared
to be implicit in the independent work (Levcopoulos and Krznaric, 1996). The constant
hidden in the O-notation is very high, though.

2. A level decomposition of GT

The usual procedural definition ofGT(S), as given in Section 1, resorts to the length
properties of the edges spanned byS as well as to their crossing properties.1 In particular,
an edge which is not crossed by any shorter edge will surely belong toGT(S). Let us call
an edgelight in this case. Below is a catalog of basic properties of light edges.

Lemma 1. Let L denote the set of all light edges defined by S.

(a) L is a non-crossing set of edges.
(b) L contains all edges bounding the convex hull of S.
(c) L is a subset of GT(S).
(d) In general, L is not a subset of MWT(S).

The following result is less obvious and is proved in (Aichholzer et al., 1996). Let|A|
be theweightof a given setA of edges, that is, the sum of the lengths of all the edges inA.

Lemma 2. |L| ≤ |MWT(S)|.

In conjunction with Lemma 1(c), Lemma 2 immediately implies: IfL happens to form
a triangulation ofS, then|L| = |GT(S)| = |MWT(S)|. In any case, we learn that at least a
subset of the edges inGT(S) can be bounded in length by the weight ofMWT(S).

In general, the following fact prevents particular edges inGT(S) from being light. An
edgee, though showing up inGT(S), may still be crossed by some edgef shorter thane,
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Figure 1. GT with three levels shown solid, dotted, and dashed.

as f might be non-compatible, that is,f is crossed by shorter edges which have already
been inserted intoGT(S). This fact suggests to generalize the definition of light edges.

The edges inL are calledlight of level1. Let E be the total set of edges defined by
S, and letC1 collect all edges ofE that are crossed by some edge inL. Notice that each
edge inL, and therefore no edge inC1, appears inGT(S). DefineE2= E\(L ∪ C1). An
edgee∈ E2 is calledlight of level2 if e is not crossed by a shorter edge inE2. Let L2 be
the set of all edges which are light of level 2, and letC2 collect all edges ofE2 that are
crossed by some edge inL2. Again, each edge inL2, and therefore no edge inC2, appears
in GT(S). By settingE3= E2\(L2 ∪ C2) we now can define, in the obvious way, the set
L3 of edges which are light of level 3 (see figure 1). Repeating this process untilEk+1=∅
yields a hierarchy of levelsL1, L2, . . . , Lk with L1= L.

It is evident that levels are pairwise disjoint, and that no edge of leveli can cross an edge
of level j , for 1≤ i, j ≤ k. More specifically, we have:

Lemma 3. GT(S) = L1 ∪ L2 ∪ · · · ∪ Lk.

Lemma 3 gives an alternative, though still procedural, definition ofGT(S) which is of
interest in its own right. It provides a more structured view ofGT(S) than does the original
definition and does not require the sorted order of the edges spanned byS. Clearly, a level
decomposition ofGT(S) can be computed in polynomial time. We leave open the question
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whether the level decomposition proves useful in the design of new and efficient greedy
triangulation algorithms.2

From Lemma 2 we learn that a GT with a single level is in fact a MWT. This suggests
the conjecture that, ifGT(S) has only a few levels, it should not decline in weight too much
from MWT(S). We affirmatively settle this conjecture in the following section.

3. Bounding the weight of ak-level GT

The goal of this section is to establish an upper bound on the weight ofGT(S) that depends
on the number of levels ofGT(S).

Theorem 1. Let S be a finite set of points in the plane, and let k be the number of levels
attained by GT(S). Then|GT(S)|≤ ck · |MWT(S)|, where c1= 1 and ck= 3·2k+1 for k≥ 2.

The reminder of this section contains a proof of Theorem 1. The special casek= 1 follows
from Lemma 2. Fork≥ 2, the proof is mainly based on an appropriate weighting scheme for
the points inS. It proceeds in three stages: (1) each point is associated with an initial weight,
such that the sum of these weights can be related to the weight ofMWT(S) (Lemma 4);
(2) point weights are updated stepwise, where each step corresponds to a level ofGT(S),
and the increase of weight per point is controlled (Lemma 5); and (3) the sum of the final
point weights is used to bound the weight ofGT(S) (Lemma 7).

The weight of each pointp∈ S is obtained by assigning top a certain star of incident
edges. A star can also contain edges which are not inGT(S). The initial star ofp, σ0(p),
consists of three edges such that the angles between consecutive edges are less thanπ ,
and the sum of the edge lengths is minimum. (An exception are points lying on the convex
hull of S. Their initial star consists of the two respective convex hull edges instead.) Here,
and during the subsequent extensions and modifications of stars, the weight of a pointp is
defined to be the length of the longest edge in its star. Letw0(p) be the initial weight ofp.

Lemma 4.
∑

p∈Sw0(p)≤ 2 · |MWT(S)|.
Proof: For any pointp∈ S, any triangulation ofShas to contain edges incident topwhose
total length is at leastw0(p). In particular, this is true forMWT(S). The factor 2 is obtained
because each edge ofMWT(S) is counted twice in this way, once for each endpoint.2

LetGT(S) consist ofk levels. For each pointp∈ S, its star is now updated duringk steps.
Let σi (p) denote the star ofp after stepi , for i = 1, . . . , k. The following three invariants
for σi (p) are maintained.

(1) σi (p) contains—among possible other edges—all incident edges inGT(S)which are
of level at mosti .

(2) All angles between consecutive edges inσi (p) are less thanπ .
(3) No edge ofσi (p) is crossed by any edge inGT(S) of level≤i .

To maintain invariant (1), all incident level-i edges are added toσi−1(p). Adding such an
edge is called anexpansionof a star. Clearly, an expansion does not destroy invariant (2).
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Figure 2. Modification of a star.

After having expanded the stars for all points inS, invariant (3) may be violated. Assume
this is the case for pointp. For each edgeg in p’s star that is crossed by edges of level≤i
we do the following; see figure 2. Letl be the edge of level≤i that crossesg closest to
p. Consider the (topologically closed) triangle spanned byl and p, and letx andy be the
points in this triangle that are hit first wheng is rotated aboutp. (Note thatx or y can be
an endpoint ofl .) We removeg, and add the edgespx andpy if they have not been part of
the star yet. This action is called amodificationof a star.

Indeed, after the modification, no edge of level≤i crossespx or py. By construction,
any such edgeewould have to crossg, too. Asg is no edge ofGT(S), g was already present
in σi−1(p). Hence, by invariant (3),e cannot be of level≤i − 1. It also cannot be of level
i , as this would contradict the definition ofl , x, andy. Notice finally that invariant (2) is
maintained during a modification.

Recall that the weight of a pointp after stepi ,wi (p), was defined to be the length of the
longest edge inσi (p).

Lemma 5. wi (p)≤ 2 · wi−1(p), for i = 1, . . . , k.

Proof: We argue that an expansion, as well as a modification, can produce edges of length
at most twice the length of the longest edge inσi−1(p).

We first consider an expansion ofσi−1(p). Let l be an edge of leveli that is added, and
let g andh be the edges adjacent tol in σi−1(p); see figure 3. We have|g|, |h|≤wi−1(p).
Assume|l |>wi−1(p) as there is nothing to prove, otherwise. By invariant (2),l then
crosses the edgeqr , whereq and r are the second endpoints ofg and h, respectively.
Consider the convex hull of all points ofS that lie in the trianglepqr, includingq andr but
excludingp. Let e be the edge of the convex hull which is crossed first byl when coming
from p. (Note thate=qr is possible.) By construction,e cannot be crossed by any edge
of level≤i − 1 as such an edge would have to crossg or h, too, contradicting invariant (3).
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Figure 3. Expansion of a star.

Hence|l |≤ |e|, ase instead ofl would be of leveli , otherwise. Moreover, by the triangle
inequality,|e|≤ |g| + |h|. We conclude|l |≤2 · wi−1(p).

Similar arguments can be used to bound the length of edges stemming from a modification
of the expanded star. Letg, l , x, andy be defined as in the modification step; cf. figure 2.
Recall thatg already appears inσi−1(p). So |g|≤wi−1(p). Furthermore,g cannot cross
edges of level≤i − 1 by invariant (3) but, by definition, it crosses the level-i edgel added in
stepi . This implies|l |≤ |g|. By construction ofx andy, max{|px|, |py|} ≤ |g| + |l |. We
conclude|px|, |py|≤2 · |g|≤2 · wi−1(p). 2

Finally, in order to bound the weight ofGT(S) by means of the weights of the points in
Safter stepk, we utilize the following result proved in (Aichholzer et al., 1995).

Lemma 6. Let T be an arbitrary triangulation of S. Then the edges of T can be oriented
such that each point p∈ S has an in-degree of at most3.

The assertion below is now easy to prove.

Lemma 7. |GT(S)|≤3 ·∑p∈Swk(p).

Proof: According to Lemma 6, we orient the edges ofGT(S) such that each pointp∈ S
has at most three incident edges pointing at it. By invariant (1), these edges also have to
be present in the final starσk(p). Therefore, their total length is bounded by 3· wk(p).
Summing over all points inSgives the stated result. 2

Theorem 1, the main result of this paper, now follows from combining Lemmas 4, 5,
and 7.
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Figure 4. Expected number of levels.

4. On the number and length of levels

The quality of the bound on GT expressed in Theorem 1 depends on how a GT is structured
into levels. Below we summarize several observations on the number of levels as well as
on lower bounds on the weight of particular levels.

Let us first report on some experimental results. We have run a level decomposition al-
gorithm for the GT ofn≤ 500 points uniformly distributed in the unit square. Figure 4 dis-
plays the numberk of levels in dependence ofn. For eachn, this number has been averaged
over 100 sets of cardinalityn. As can be observed,k shows a very slow increase already for
moderately largen. Similar results have been obtained independently in (Jansson, 1995) in
experiments with up to 1000 points.

For constantk, Theorem 1 implies that the GT is a constant approximation to the MWT.
Hence, for uniformly distributed points, the observed behaviour of GT is in accordance
with the theoretical result in (Levcopoulos and Lingas, 1992).

For specially constructed point sets, however,k can be up to linear inn. The points
p1, p2, . . . , pn in figure 5 are placed on a circle where, fori = 2, . . . ,n, |pi−1 pi | increases
by a fixed amount such that|pn p1| = 2 · |p1 p2|. Aside from convex hull edges, onlyp1 p3

belongs to levelL1. This is because, for 2≤ i ≤ n, |pi pj |> |pi−1 pi+1| if j ≥ i + 2. For
similar reasons, onlyp3 p5 belongs to levelL2. By repeating this type of argument, we see
that in fact each inner edge ofGT({p1, . . . , pn}) constitutes a separate level. This gives a
lower bound ofk≥ n− 3.

As a curious fact, notice thatGT({p1, . . . , pn})—though far from being a light triangula-
tion—coincides withMWT({p1, . . . , pn}) in this case.

From Lemma 2 the question arises whether each particular level of a GT can be bounded
in weight by the corresponding MWT. (The proof of Theorem 1 shows that levels can at
most double in weight in the worst case.) A result of this kind would immediately give a
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Figure 5. GT with many levels.

bound on GT that depends linearly onk rather than exponentially. Figure 6 exhibits a point
setS where|L2|> |MWT(S)|. The inner edge shown in solid at the left top of the picture
belongs to levelL1. This edge is shorter than all dashed edges it crosses and excludes them
from GT(S). Therefore, the bundle of solid edges emanating from the points on the bottom
of the picture belongs to levelL2. The dashed edges emanating from these points, however,

Figure 6. Level 2 (solid) exceeds the MWT (dashed).
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are shorter than the solid ones and belong toMWT(S). Thus, if the number of bottom points
is sufficiently large,L2 will dominateMWT(S) in weight. A similar construction can be
done for a higher levelLi , yielding |Li |> |MWT(S)| for a given valuei ≤ k.
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Notes

1. By length of an edge we mean the Euclidean distance between its endpoints. Two distinct
edges are said to cross if they intersect in their interiors. To ease the presentation, let
us assume throughout thatS is in general position and that no two edges have the same
length.

2. We have recently learned that level decompositions have been used in (Jansson, 1995)
for computing the greedy triangulation in parallel.
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