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Abstract 

We present an efficient algorithm for solving the following problem. Given two disjoint convex polygonal regions P, Q in 
the plane, add a line segment to connect them so as to minimize the maximum of the distances between points in one region 
and points in the other region. An O(n2 logn) time algorithm is presented to lind such a line segment (optimal bridge) (p, q), 
where n is the maximal cardinality of P. Q. We also present a very simple linear time constant factor approximate solution for 
this problem. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In our daily life, given some separated regions, 
sometimes it is necessary to construct roads or bridges 
to connect them such that the length of a path between 
any two points in different regions is minimized (or 
is provably small). This problem can be thought of 
a variation of the Steiner tree problem [5] in two 
different ways: (1) we add a Steiner edge instead of 
a point; and (2) we want to minimize the maximum 
distance instead of the total distance. This note studies 
the simplest case for two separated convex polygonal 
regions. 

It is easy to see that in order to determine the 
location of the line segment, we only need to consider 
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the boundaries of the two regions. Therefore, we 
can formalize our problem as follows. Let P and 
Q be two disjoint convex polygons in the plane 
with boundaries a P and aQ, respectively. Denote 
the Euclidean distance between two points p and q 
by d(p, q). We consider the problem of finding two 
points p E i) P and q E i3 Q that minimize 

We refer to the line segment (p, q) as the optimal 

bridge of P and Q. 
Let V(P) and V(Q) be the vertex sets of P and Q, 

respectively, and let IZ denote max{ 1 V(P) 1, 1 V(Q) I). 
In this paper we transform the above nonlinear opti- 
mization problem into a discrete optimization problem 
and then present an O(n2 logn) algorithm to solve it. 
We also give a simple linear time algorithm that ap- 
proximates the maximum distance within a factor of 
two. 
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2. Geometric analysis and the algorithm 

We first take a careful look at the optimal bridge 

(p, 4). Clearly p and q must be visible to each other, 

i.e., the segment connecting p, q does not intersect the 

interior of P and Q. We might still have an infinite 

number of candidates. We first prove the following 

lemma. 

Lemma 1. p must be visible to q and must be falling 
in one of the following three cases: 

(1) p E V(P), or 
(2) there is p+ E V(P) such that p is the intersection 

of the line segment (p+, q) and the boundary of 
P, or 

(3) p is the intersection point between i3 P and the 
bisector of two vertices ~1, p2 E V(P). 

Proof. We remark that (1) is the degenerate case of 

(2) and (3). Without loss of generality, we assume q 
is already fixed. Assume that (p’, q) is our optimal 

solution. As q is fixed we know that d(p’, q) + 
d(p’, P) is minimized. Let d(p’, P) = d(p’, pj) and 

let pi be some predecessor of pj . 
We consider the bisector of pi, pj and the line I 

containing the edge of P which contains p’. Assume 

their intersection is p*. Elementary geometry shows 

that if q is within the sector centered at p*, bounded 

by lines through (pi, p*), (pj, p*) and containing the 

bisector of pi, pj, then p’ must be p* (otherwise we 

can move p’ to that position to minimize the maximum 

of d(p’, 4) + d(p’, Pi) and d(p’, q) + d(p’, Pj)T see 
Fig. 1). Note that if p’ is not on aP then we might 

have a case degenerated to (1). Also, if q is out of the 

sector then one of pi, pj becomes pf (Fig. 2). q 

Fig. 1. Illustration for the proof of Lemma l(1). 

Fig. 2. Illustration for the proof of Lemma l(2). 

We would like to point out that the same conditions 

also hold for q. Lemma 1 enables us to obtain a 

polynomial time solution to compute the optimal 
bridge between P, Q. We now have the main result 

of this note. 

Theorem 2. The optimal bridge of P, Q can be 
computed in O(n* logn) time. 

Proof. With Lemma 1 we know that both p, q can 
be in one of the three situations. This will give us 

nine cases. Since all of them are very similar, we will 
only describe three cases in detail. We show the proof 

constructively in the following. 

If both p, q fall into case (l), we enumerate all 

visible bridges between P, Q. This can be done easily 
in O(n2) time by finding the upper and lower tangents 

and then for each vertex of P find all the vertices of Q 
which are visible to it. Among them we compute the 

one, (p, q), such that 

d(p, 9) + ,,,y;:p,[d(~, P”)] + 4,,F;$d(q, q”)] 

is minimized. We compute the farthest Voronoi Dia- 

gram for V(P), V(Q) . Then we can use point location 

to find, for each vertex in V(P) (V(Q)) its farthest 
neighbor in V(Q) (V(P)) in O(log n) time. After this 
preprocessing, this step of computing the maximum 
distance between p”, q” through p, q can be done in 
O(1) time. Since we have 0(n2) number of candidate 
bridges, all the computation in this step takes 0(n2) 
time. 

If p is in case (2) and q is in case (l), we first 
compute the tangents of P, Q. For all the vertices of 
P which are also on CH( P U Q) we extend segments 
toward vertices in Q which are not on CH( P U Q). 
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Among them we find the one which is the shortest. 

Assume this segment is (p+, q). We compute the 

intersection of this segment with 8 P to obtain p. 

Again this process takes O(n*) time. (We can handle 

the situation when both p, q are in case (2) similarly.) 

If both p, q are in case (3), then we have the 

most difficult situation. First of all we enumerate all 

the bisectors defined by two vertices in P (Q), then 

we compute the intersection of these bisectors with 

8 P (a Q). In fact we are only interested in those 

intersections which are visible to Q (P). We call 

these intersections candidates for P (Q). Certainly 

we have O(n’) number of candidates for p and q and 

they can be identified in O(n* logn) time (with some 

preprocessing on P, Q so that the ray shooting query 

takes O(logn) time). Clearly a brute force algorithm 

will force the algorithm to run in O(n4) time. We now 

show how to reduce the bound to O(n’ log n). 

First, for each candidate point in P (Q) we compute 

its farthest neighbor in P (Q). This can be done 

in O(n’logn) time. We first construct the farthest 

Voronoi Diagram [8] for the vertices of P (Q) and 

for each candidate point in P (Q) we perform a 

point location query in O(logn) time [4,6,7]. As the 

number of candidate points is O(n*), we have spent 

O(n* log n) time so far. Now for all candidate points 

in P we construct the additively weighted (nearest) 

Voronoi Diagram, Vor( P) (under the L2 metric) such 

that the initial positive weight for each candidate is the 

length of the distance from it to its farthest neighbor in 

P [2,3]. Finally we perform 0(n2) number of point 

location queries in this Voronoi Diagram Vor(P) for 

all the candidates in Q. We perform this symmetrically 

for Q. This way, we can find the weighted nearest 

neighbor among a pair of candidates in P, Q much 

faster: the additively weighted Voronoi Diagram can 

be constructed in O(n* logn*) = O(n’ logn) time as 

it is transformable to the famous power diagram [ 11, 

point location queries also takes O(logn’) = O(logn) 

time (even though in the additively weighted Voronoi 

Diagram edges are parabola) [4,6,7]. Therefore, we 

can deal with this case in a total of O(n2 logn) 
time. 

Finally, among all the (p, q) candidates we simply 

find the one which minimizes the maximum distance 

between P, Q. q 

3. A simple linear time constant factor 
approximate solution 

In this section, we present a very simple factor-2 

approximate solution for this problem. This algorithm 

involves no complicated subroutines like constructing 

additively weighted Voronoi Diagram and is very easy 

to implement. The algorithm is as follows. 

Algorithm AppMinMax( P, Q). 

(1) Compute the minimum distance (i.e., separation) 
between all the points of P and Q. Let p, q be the 

corresponding points on P, Q, respectively. 

(2) Output (p, q) as the approximate solution for the 

optimal bridge. 

The above algorithm certainly runs in O(n) time as 

the computation of the separation between two convex 

polygons can easily be computed in O(n) time with the 

hierarchical representations of P, Q [6]. The result is 

summarized as follows. 

Theorem 3. AppMinMax( P, Q) presents a factor-2 
approximate solution to the optimal bridge between P, 

Q. 

Proof. Let D(P), D(Q) be the diameter of P, Q, 
respectively. Let (pi, p*), (p”, q*) and together with 

(q*, q,) be the optimal solution and the total optimal 

distance be dOpt(P, Q). Without loss of generality, let 

D(P) = d(pl 3 p2)t 

where ~1, p2 E V(P). We claim that d(pi, p*) 3 
D(P)/2, as D(P)/2 is the minmax distance for 

any point in the plane to reach ~1, ~2. Similarly 

we have d(q*,qj) 3 D(Q)/2. By the definition of 

the separation (p, q) we have d(p*, q*) 2 d(p, q). 
Consequently 

&nt(P, Q> =d(pi, P*) + d(p*, q*) + d(q*, qj) 

3 D(P)/2 + d(p> s> + NQ)/2. 

For any p’ E V(P), q’ E V(Q) we have d(p’, p) < 
D(P) and d(q, q’) 6 D(Q) (Fig. 3). Overall, we have 

0’9 P) + d(p, q) + d(q, 4’) 

< D(P) +d(p. 4) + WQ> < 2dopt(f’, Q,. •I 



130 L. Cai et al. /Information Processing Letters 69 (1999) 127-130 

Fig. 3. Illustration for the proof of Theorem 3. 

4. Remarks 

In this note we present an O(n2 logn) time solution 
to solve the optimal bridge problem. We also present a 

simple factor-2 approximate solution. It is interesting 

to know whether we can improve this upper bound as 
52 (n) is the only known (trivial) lower bound. Another 

interesting question is whether we can have a better 
approximate solution. 
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