
JsJ& __ .- _- k!iB
Informqtion
;~;~ry?3

ELSWIER Information Processing Letters 69 (1999) 127-130

Computing the optimal bridge between two convex polygons *

Leizhen Cai a, Yinfeng Xu b, Binhai Zhu ‘ld,*
’ Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

b School of Manag ement, Xi’an Jiaotong University, China

’ Depurtment of Computer Science, City Universiv of Hong Kong, Kowloon, Hong Kong

’ Department of Mathematics and Computer Science, Laurentian University Ramsey Lake Road, Sudbury Ontario, Canada PSE 205

Received 1 August 1998; received in revised form 1 November 1998
Communicated by S.G. Akl

Abstract

We present an efficient algorithm for solving the following problem. Given two disjoint convex polygonal regions P, Q in
the plane, add a line segment to connect them so as to minimize the maximum of the distances between points in one region
and points in the other region. An O(n2 logn) time algorithm is presented to lind such a line segment (optimal bridge) (p, q),
where n is the maximal cardinality of P. Q. We also present a very simple linear time constant factor approximate solution for
this problem. 0 1999 Elsevier Science B.V. All rights reserved.

Kewords; Computational geometry; Discrete optimization; Approximation

1. Introduction

In our daily life, given some separated regions,
sometimes it is necessary to construct roads or bridges
to connect them such that the length of a path between
any two points in different regions is minimized (or
is provably small). This problem can be thought of
a variation of the Steiner tree problem [5] in two
different ways: (1) we add a Steiner edge instead of
a point; and (2) we want to minimize the maximum
distance instead of the total distance. This note studies
the simplest case for two separated convex polygonal
regions.

It is easy to see that in order to determine the
location of the line segment, we only need to consider

0020-0190/99/$ - see front matter 0 1999 Elsevier Science B.V. All rights reserved.
PII: SOO20-0190(99)00003-4

This research 1s supported by the UGC of Hong Kong, NSF of
China, and City University of Hong Kong.

* Corresponding author.

the boundaries of the two regions. Therefore, we
can formalize our problem as follows. Let P and
Q be two disjoint convex polygons in the plane
with boundaries a P and aQ, respectively. Denote
the Euclidean distance between two points p and q
by d(p, q). We consider the problem of finding two
points p E i) P and q E i3 Q that minimize

We refer to the line segment (p, q) as the optimal

bridge of P and Q.
Let V(P) and V(Q) be the vertex sets of P and Q,

respectively, and let IZ denote max{ 1 V(P) 1, 1 V(Q) I).
In this paper we transform the above nonlinear opti-
mization problem into a discrete optimization problem
and then present an O(n2 logn) algorithm to solve it.
We also give a simple linear time algorithm that ap-
proximates the maximum distance within a factor of
two.

128 L. Cai et al. /Information Processing Letters 69 (1999) 127-130

2. Geometric analysis and the algorithm

We first take a careful look at the optimal bridge

(p, 4). Clearly p and q must be visible to each other,

i.e., the segment connecting p, q does not intersect the

interior of P and Q. We might still have an infinite

number of candidates. We first prove the following

lemma.

Lemma 1. p must be visible to q and must be falling
in one of the following three cases:

(1) p E V(P), or
(2) there is p+ E V(P) such that p is the intersection

of the line segment (p+, q) and the boundary of
P, or

(3) p is the intersection point between i3 P and the
bisector of two vertices ~1, p2 E V(P).

Proof. We remark that (1) is the degenerate case of

(2) and (3). Without loss of generality, we assume q
is already fixed. Assume that (p’, q) is our optimal

solution. As q is fixed we know that d(p’, q) +
d(p’, P) is minimized. Let d(p’, P) = d(p’, pj) and

let pi be some predecessor of pj .
We consider the bisector of pi, pj and the line I

containing the edge of P which contains p’. Assume

their intersection is p*. Elementary geometry shows

that if q is within the sector centered at p*, bounded

by lines through (pi, p*), (pj, p*) and containing the

bisector of pi, pj, then p’ must be p* (otherwise we

can move p’ to that position to minimize the maximum

of d(p’, 4) + d(p’, Pi) and d(p’, q) + d(p’, Pj)T see
Fig. 1). Note that if p’ is not on aP then we might

have a case degenerated to (1). Also, if q is out of the

sector then one of pi, pj becomes pf (Fig. 2). q

Fig. 1. Illustration for the proof of Lemma l(1).

Fig. 2. Illustration for the proof of Lemma l(2).

We would like to point out that the same conditions

also hold for q. Lemma 1 enables us to obtain a

polynomial time solution to compute the optimal
bridge between P, Q. We now have the main result

of this note.

Theorem 2. The optimal bridge of P, Q can be
computed in O(n* logn) time.

Proof. With Lemma 1 we know that both p, q can
be in one of the three situations. This will give us

nine cases. Since all of them are very similar, we will
only describe three cases in detail. We show the proof

constructively in the following.

If both p, q fall into case (l), we enumerate all

visible bridges between P, Q. This can be done easily
in O(n2) time by finding the upper and lower tangents

and then for each vertex of P find all the vertices of Q
which are visible to it. Among them we compute the

one, (p, q), such that

d(p, 9) + ,,,y;:p,[d(~, P”)] + 4,,F;$d(q, q”)]

is minimized. We compute the farthest Voronoi Dia-

gram for V(P), V(Q) . Then we can use point location

to find, for each vertex in V(P) (V(Q)) its farthest
neighbor in V(Q) (V(P)) in O(log n) time. After this
preprocessing, this step of computing the maximum
distance between p”, q” through p, q can be done in
O(1) time. Since we have 0(n2) number of candidate
bridges, all the computation in this step takes 0(n2)
time.

If p is in case (2) and q is in case (l), we first
compute the tangents of P, Q. For all the vertices of
P which are also on CH(P U Q) we extend segments
toward vertices in Q which are not on CH(P U Q).

L. Cai et al. /Information Processing Letters 69 (1999) 127-130 129

Among them we find the one which is the shortest.

Assume this segment is (p+, q). We compute the

intersection of this segment with 8 P to obtain p.

Again this process takes O(n*) time. (We can handle

the situation when both p, q are in case (2) similarly.)

If both p, q are in case (3), then we have the

most difficult situation. First of all we enumerate all

the bisectors defined by two vertices in P (Q), then

we compute the intersection of these bisectors with

8 P (a Q). In fact we are only interested in those

intersections which are visible to Q (P). We call

these intersections candidates for P (Q). Certainly

we have O(n’) number of candidates for p and q and

they can be identified in O(n* logn) time (with some

preprocessing on P, Q so that the ray shooting query

takes O(logn) time). Clearly a brute force algorithm

will force the algorithm to run in O(n4) time. We now

show how to reduce the bound to O(n’ log n).

First, for each candidate point in P (Q) we compute

its farthest neighbor in P (Q). This can be done

in O(n’logn) time. We first construct the farthest

Voronoi Diagram [8] for the vertices of P (Q) and

for each candidate point in P (Q) we perform a

point location query in O(logn) time [4,6,7]. As the

number of candidate points is O(n*), we have spent

O(n* log n) time so far. Now for all candidate points

in P we construct the additively weighted (nearest)

Voronoi Diagram, Vor(P) (under the L2 metric) such

that the initial positive weight for each candidate is the

length of the distance from it to its farthest neighbor in

P [2,3]. Finally we perform 0(n2) number of point

location queries in this Voronoi Diagram Vor(P) for

all the candidates in Q. We perform this symmetrically

for Q. This way, we can find the weighted nearest

neighbor among a pair of candidates in P, Q much

faster: the additively weighted Voronoi Diagram can

be constructed in O(n* logn*) = O(n’ logn) time as

it is transformable to the famous power diagram [11,

point location queries also takes O(logn’) = O(logn)

time (even though in the additively weighted Voronoi

Diagram edges are parabola) [4,6,7]. Therefore, we

can deal with this case in a total of O(n2 logn)
time.

Finally, among all the (p, q) candidates we simply

find the one which minimizes the maximum distance

between P, Q. q

3. A simple linear time constant factor
approximate solution

In this section, we present a very simple factor-2

approximate solution for this problem. This algorithm

involves no complicated subroutines like constructing

additively weighted Voronoi Diagram and is very easy

to implement. The algorithm is as follows.

Algorithm AppMinMax(P, Q).

(1) Compute the minimum distance (i.e., separation)
between all the points of P and Q. Let p, q be the

corresponding points on P, Q, respectively.

(2) Output (p, q) as the approximate solution for the

optimal bridge.

The above algorithm certainly runs in O(n) time as

the computation of the separation between two convex

polygons can easily be computed in O(n) time with the

hierarchical representations of P, Q [6]. The result is

summarized as follows.

Theorem 3. AppMinMax(P, Q) presents a factor-2
approximate solution to the optimal bridge between P,

Q.

Proof. Let D(P), D(Q) be the diameter of P, Q,
respectively. Let (pi, p*), (p”, q*) and together with

(q*, q,) be the optimal solution and the total optimal

distance be dOpt(P, Q). Without loss of generality, let

D(P) = d(pl 3 p2)t

where ~1, p2 E V(P). We claim that d(pi, p*) 3
D(P)/2, as D(P)/2 is the minmax distance for

any point in the plane to reach ~1, ~2. Similarly

we have d(q*,qj) 3 D(Q)/2. By the definition of

the separation (p, q) we have d(p*, q*) 2 d(p, q).
Consequently

&nt(P, Q> =d(pi, P*) + d(p*, q*) + d(q*, qj)

3 D(P)/2 + d(p> s> + NQ)/2.

For any p’ E V(P), q’ E V(Q) we have d(p’, p) <
D(P) and d(q, q’) 6 D(Q) (Fig. 3). Overall, we have

0’9 P) + d(p, q) + d(q, 4’)

< D(P) +d(p. 4) + WQ> < 2dopt(f’, Q,. •I

130 L. Cai et al. /Information Processing Letters 69 (1999) 127-130

Fig. 3. Illustration for the proof of Theorem 3.

4. Remarks

In this note we present an O(n2 logn) time solution
to solve the optimal bridge problem. We also present a

simple factor-2 approximate solution. It is interesting

to know whether we can improve this upper bound as
52 (n) is the only known (trivial) lower bound. Another

interesting question is whether we can have a better
approximate solution.

References

[l] E Aurenhammer, Power diagrams: Properties, algorithms and

applications, SIAM J. Comput. 16 (1) (1987) 78-96.

[2] F. Amenhammer, Voronoi diagrams: A survey of a fundamen-

tal geometric data structures, ACM Comput. Surveys 23 (3)

(1991) 343405.

[3] E Aurenhammer, H. Imai, Geometric relations among Voronoi

diagrams, Geom. Dedicata 27 (1988) 65-75.

[4] H. Edelsbrunner, L.J. Guibas, J. Stolfi, Optimal point location

in a monotone subdivision, SIAM J. Comput. 15 (1986) 3 17-

340.

[5] Z.A. Melzak, On the problem of Steiner, Canad. Math. Bull. 4

(1961) 143-148.

[6] F. Preparata, M. Shamos, Computational Geometry, Springer,

Berlin, 1985.

[7] N. Samak, R.E. Tarjan, Planar point location using persistent

search trees, Comm. ACM 29 (1986) 669-679.

[8] G. Toussaint, Computational Geometry, North-Holland, Am-

sterdam, 1985.

