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Abstract. In this paper, two sufficient conditions for identifying a subgraph of minimum weight triangulation of
aplanar point set are presented. These conditions are based on local geometric properties of an edge to be identifiec
Unlike the previous known sufficient conditions for identifying subgraphs, such as Keskeleton and Yang and

Xu’'s double circles, The local geometric requirement in our conditions is not necessary symmetric with respect
to the edge to be identified. The identified subgraph is different from all the known subgraphs including the newly
discovered subgraph: so-called the intersection of local-optimal triangulations by Dickerson eCalnArime

algorithm for finding this subgraph from a setropoints is presented.

Keywords:

1. Introduction

LetS={s|i =0,...,n— 1} be a set oh points in a plane. For simplicity, we assume
that Sis in general position so that no three pointsSrare colinear. Le§s; fori # j
denote the line segment with endpoigtands;, and letw (s s;) denote the weight &sj,
that is the Euclidean distance betweseands;.

A triangulationof S, denoted byt (S), is a maximum set of non-crossing line segments
with their endpoints irSS. It follows that the interior of the convex hull & is partitioned
into non-overlapping triangles. The weight of a triangulafiai®) is given by

o(TEO)= )Y  olss).
55 ¢eT(9
A minimum weight triangulationdenoted byMWT, of Sis defined as for all possible
T(9), o(MWT(S)) = min{w (T (9))}.

*This work is partially supported by NSERC grant OPG0041629 and HKU funded project HKU 287/95E through
RGC firect allocation.



116 WANG, CHIN AND XU

MWT(S) is one of the outstanding open problems listed in Garey and Johnson’s book
(1979). The complexity status of this problem is unknown since 1975 [SH75]. A great deal
of works has been done to seek the ultimate solution of the problem. Basically, there are
two directions to attack the problem. The first one is to identify edges inclusive or exclusive
to MWT(S) (Cheng and Xu, 1995; Keil, 1994; Yang et al., 1994) and the second one is to
construct exadWT(S) for restricted classes of point set (Anagnostou and Corneil, 1993;
Cheng et al., 1995; Gilbert, 1979; Klinesek, 1980). In the first direction, two subdirections
have been taken. It is obvious that the intersection of all pos3it®s is a subgraph of
MWT(S). Recently, Dickerson and Montague (1996) have shown that the intersection of all
local optimal triangulations dbis a subgraph dMWT(S). (A triangulationT (S) is called
k-gon local optimal, denoted bl (S), if any k-sided simple polygon extracted from(S)
is an optimal triangulation for thik-gon by those edges @f(S) lying inside thisk-gon.)
Then, if theMWT(S) is unique, then the following inclusion property holds:

TO (TS -~ <[ Thea(S € MWT(S)

This approach has some flavor of global consideration vihisrincreased, however, it
seems difficult to find the intersectionslais increased.

Gilbert (1979) showed that the shortest edgeSiis in MWT(S). Yang et al. (1994)
showed that mutual nearest neighbors are alddWAT(S). Keil (1994) presented that the
so-calleds-skeleton ofS for 8 = +/2 is a subgraph dfIWT(S). Cheng and Xu (1996)
extended Keil's result t@@ = 1.17682. The edge identification MWT(S) seems to be
a promising approach and has the following merits. The more edge®\6F(S) being
identified, the less disconnected componentS. i hus, it is possible that eventually all
these identified edges form a connected graph so thet\&fi(S) can be constructed by
dynamic programming in polynomial time (Cheng et al., 1995). Moreover, it has been
shown in Xu and Zhou (1995) that the increase of the size of subgral@oii(S) could
improve the performance of some heuristics.

The second direction is to construct exBVT(S) for restricted classes of point s8t
Gilbert (1979) and Klinesek (1980) independently showe®an?) time dynamic program-
ming algorithm to obtain aMWT(S), whereSis restricted to a simpla-gon. Recently,
Anagnostou and Corneil (1993) gave@m3**1) time algorithm to find aMWT(S), where
Sis restricted ork nested convex polygons. Meijer and Rappaport (1993) later improved
the bound taO(n*) whenSis restricted ork non-intersecting lines. At the same time, it
was shown in Cheng et al. (1995) that if given a subgrapkl8fT(S) with k connected
components, then the compl&®VT(S) can be computed i®(n*+2) time.

This paper can be classified as the first direction. The paper is organized as follows.
Section 2 surveys the recent results in this direction. Section 3 presents our sufficient
conditions. Section 4 proposes an algorithm for finding a subgrapVeét(S) using the
given sufficient conditions. Finally, we conclude our work.

2. Areview of previous approaches

A trivial subgraph of theMWT(S) is the convex hull ofS, CH(S), since it exists in
any MWT(S). A simple extension of the above idea is the intersection of all possible
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triangulations ofS calledstable line segmeni{#Mirzain et al., 1996), denoted by $8),
such that

sus = (] TS,

T(9ed

whereJ denotes the set of all possible triangulationSoThe structure properties and the
algorithms for findingSL(S) were discussed in (Mirzain et al., 1996).

A recent result obtained by Dickerson and Montague (1996) showed that a subgraph
LOT(S) of NT4(S) can be found ir0(n*) time andO(n®) space. The following inclusion
relation holds:

CH(S) € SKS) S LOT(S) < () Ta(S).

Another class of subgraphs BIWT(S) was identified using some local geometric prop-
erties related to an edge (Cheng and Xu, 1996; Keil, 1994; Yang et al., 1994). Keil first
pointed out an inclusion condition for an edgeMiWT(S), so-calleds-skeleton.

Fact 1 (Keil, 1994). If x and y are the endpoints of an edge in tH&-skeleton of Sand

p, g, r, and s are four distinct points in S other than x and y with p and s lying on one side
and g and r on the other of the line extendiig. Assum@q andrs crossxy, andpq does

not intersects. Then either|pq| > |qr| or |[FS| > |qr]|. (Refer to part(a) of figurel.)

With the above Fact (calleeémote length lemn)aKeil proved that if the shaded disks are
empty of points ofS, Xy is an edge of anMWT(S). Thus,+/2-skeleton§) is a subgraph

q

: | -

(a) (b)

Figure L Anillustration for the remote lemma of Keil (a) and YXY’s double circles (b).
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of MWT(S) which can be found irD(nlogn) time andO(n) space. Thes-value was
strengthened to 1.17682 in (Cheng and Xu, 1996).

Yang et al. (1994) showed that the mutual nearest neighbouBsane subgraph of an
MWT(S) and their result can be stated as follows.

Fact 2 (Yang et al., 1994).If any edgepq intersectingy for p, g, X, y € S satisfies the
following inequality

w(xy) = min{w(pX), ©(pY), ®(@X), @(@y)},
thenxy is in any MWTS).

(Refer to Part (b) of figure 1 for YXY’s condition.)

As shown in figure 1, both Keil's/2-skeleton§) and YXY’s double-circle are symmetric
with respect to edg&y. YXY’s condition also includes Gilbert's result (Gilbert, 1979)
which stated that the shortest line segment among all the line segments with their endpoints
in Sbelongs to anjMWT(S).

In many cases, an edgeMiVT(S) may not have symmetric geometric property required
by sufficient conditions for identification. However, a simple extending of the known
methods to asymmetric can run into difficulty. The difficulty caused by non-symmetric can
be easily demonstrated by the following six-point set.

Figure 2 showed an example of six points such tixa + [xb| < |FS| + |rb| and
IXy| < |rb|, |ral, and|rS|. EdgeXy satisfies our sufficient conditions, howevgr cannot
be detected by any previous inclusion method. In part (a) of figure 2, veliexinside the
Keil's as well as YXY’s empty circles, thusy cannot be identified by these two methods.

s
@

Figure 2 An example of a non-detectable edge for the known sufficient conditions.
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In part (b) of figure 2 is shorter thamb, thus, they do not swap in quadralitetat bs).
Edgera is shorter thaiXs, thus, they do not swap in quadralite¢akrs). Edgerb is shorter
thanys, thus, they do not swap in quadralitekaryb). Then,rs is an edge of a 4on
local optimaltriangulation. Hencexy does not belong to the intersection of aljdn local
optimaltriangulations and cannot be identified by Dickerson and Montague’s method.

To extend the local geometric property to asymmetric, it seems unavoidable to put fur-
ther restriction on the ‘neighboring’ points of an identifying edge. We shall show these
restrictions in the next section.

3. New sufficient conditions

We first give several definitions related to the local geometric of an Bgighen present
the sufficient conditions.

Definition Let E(S) denote the set of all line segments with their endpointS.ir_et
Exy be the subset dE(S), each of which crosses edggfor x, y € S. LetV,y denote the
endpoint set oEyy, V;g, denote the subset &y, on the upper open halfplane bounded by
the line extendingy, andV,, denote that on the lower closed halfplane, M, includes
{x, y}. Then,thy is called2star-shapedif the interior of any triangleAxvy for every
v €V, does not contain a vertex M7,. Similarly we can define ar-shapedfor V,
(Refer to part (a) of figure 3.) L&L[" denote the subset ¥ on the same side afalong
the perpendicular bisectd, of Xy, and letV,!~ denote the subset on the same sidg.as
LetEL,, ., y denotes the ellipstic area specified by facandv; with boundary poiny. Let
verticesvi € V,{" U{x} andv; € V.~ U{y} be the foci (except simultaneously= x and
vj = y) and|yvi |+ |yvj| as the fixed sum of the length¥,, \ is calledellipse-disconnected
(w.r.t. V. y) if for any v; andvj, [Xy| < min{|Xvi], |[yv;|} and no vertex invg, xy is contained
by the ellipsesEL,, .,y U EL,, 4, x Within the fan-area bounded twy and qx (Refer to
part (b) of figure 3, where only the empty ellipse area related to paio{) is shown.)V,"

Figure 3  An illustration for the definitions.
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Figure 4  Anillustration of a thin set.

is calledcircle-disconnected(w.r.t. V*) if forany v € V, Xy, |Xy| < min{|Xv|, |[yv|} and no
vertex inV, is contained by the C|rcle with as center and withx or vy as radlus within
the fan-area bounded by< andvy vy. A similar definition can be made fi/,

Definition  The diameterof V., (Vi) is denoted byd(V,) (d(Vy))). SetVy| is called
thin if d(V. y) < Omin(Vyys ny) Wheredm.n( s V)jg,) = min{vpvg | vp € ny, vq € Vi
Similarly, define thin forv,;;. (Refer to figure 4 for the definition.)

Theorem1l. Edgexyisinevery MWT{S)if (1) V, |s 2star-shaped and ellipse-disconnec-
ted and(2) w(xy) = d(V, ) (Referto f|gur65)

Proof: By contradiction. Suppose thay does not belong to any\WT(S). Then, there
exists alMWT(S) such that some of its edges, denotedday (€ Eyy), Crossxy. LetV**
denote the endpoint set &, belonging to XJ; andV, ", belonging tov,. If we remove
Enm from thisMWT(S), the resulting non- tnangulated area, dendiets aconnected region
with Vi UV U (X, y} as vertices. Since,* is a subset of,, V,{* is also 2star-shaped
and ellipse-disconnected, and sir\@g* is a subset oV, oy @(XY) = d(V‘*) is also hold.
Note that the number of vertices containediris |V+*| + V'l + 2, WhICh is|[Em| + 3.
Then, the number of internal edges®for any triangulation 01R is also|Ey|. Now, we
shall build a triangulatio (R) such thafl (R) containsXy as an edge and(int(T (R)) is
less tharw (Ey), where intT (R))) is the internal edges af (R).

To do so, we add edgesx clockwisely atx and add edges;y anti-clockwisely aty,
wherev; € V[ andv; € V{7, andV, ("™ andV,{~* are the left subset and the right
subset of\/;;* along Byy, respectively; Addkv|, wherev; is the last vertex of\/;;—* in
anti-clockwisely aty. Then, addy so that the portion oR above the line extendirngy,
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Figure 5 Anillustration for sufficient conditions.

R*, is triangulated. This can be realized because the 2star-shaped prop\e‘;w. of\ve
further add edges to triangulate the portiorRifelowxy, R~, by any method. Thug, (R)
is completed.
We only need compare the weight of the internal edgeb(&) with the weight ofEy,
since the two triangulations & shared the same boundary edges. The number of internal
edges ofT (R) is equal to that oEy;, which allows us to build a match between them. If
Vil = 0, we have done. IV,{*| = 1, then by condition (1), the edges Bf, ending
atv; (resp.vj) is longer tharkv; (resp. yvj), andXv; (resp. yvj) is longer tharxy, thus
any edge ofEy, is longer tharXy. Furthermore, by condition (2) any edge whose both
endpoints are if*«/x‘y is shorter than any edge By . Thus, any edge in iKT (R)) is shorter
than any edge ifEy, we have done. IfV,["| > 2, we shall consider two subcases: (a)
one of Vi and V™, sayV,{"*, is empty and (b) none of them is empty. In subcase
(@), all these edges of ifif (R)) abovexy arev;y for v; € V;Ly**. By condition (1), every
v;y is shorter than these dEy ending atv;. Since there ar¢V, | — 1 such edges,
the unmatchedy, is a size of|VX‘y*|, i.e., there must havp/,*| edges includiny to
completely triangulate the remaining portionRf Note by condition (2) that each of these
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added edges iR~ is shorter than or equal to any Bfy. Thus,w(En) > @ (int(T (R))). In
subcase (b), there exists an edge ofiiR)) crossingBxy. Letit beyv;. Letv/v; be the
edge of the boundary &®" crossed byB,,. We first matchyv; andyv] with the two edges

of Em ending atyj andvj and sharing the other endpoint V" ThIS match is always
possible because edgev; must belong to anMWT(S), hencev’v] must belong to a
triangle of T (R) as well as a triangle ofy, of MWT(S). By the empty ellipse property
of condition (1), (lyv{| + |yv]]) is less than that of these two matched edgeSyn For

the remaining edges of i(l (R)), we matchv;X with an edge oEy ending atv; andv;y
with an edge oEy ending atv; (if it possible). Itis implied by condition (1) that an edge
of Em ending at; (resp.vj) is longer tharxv; (resp.yv;) (because the circle with (v;)

as center and witlRv; (Yvj) as radius inR™ is contained by the empty ellipse area). The
remaining edges of iNT (R)) are matched witiXy and those edges whose both endpoints
in V,;*. The remaining match is always possible as the same reason described in subcase
(a). By condition (2) and the fact that any edgesf is longer tharxy, the weight of these
remaining edges of iGT (R)) is less than or equal to that of the remaining edgeBn
Thus,w (int(T (R))) is less thanmw (Ey ), a contradiction. O

(Refer to figure 6, which shows an example of the match between the two sets of internal
edges ofR in the proof. In this example/;g,* ={1,23 4} andVX*y* =1{5,6,7}. Ey =
{a,b,c,d, e f}. The dashed line segments are in the new trianguldfigR), they are
(x2, X6, y3, y2, y6, Xy}. Note that/c| + |d| > |y2| + |y3| due to the ellipse empty area
property. One possible matching for the rest edges canxt&:a), (y6, f), (x2, b), and

(XY, €)).

Theorem 2. EdgeXy is in every MWTS) if (1) V;; is thin and circle-disconnecteand
(2) o(xy) = d(V,y).

Proof: Let the notations used in the following analysis be the same as those in the proof
of Theorem 1. We shall build a neW(S) with Xy as an edge such that its weight is less
thanMWT(S). If |VXJ;*| < 1, thenxy is in anyMWT(S) obviously. If|VXJ;*| > 2, then

we consider two subcases: (a) none/gjf* andV)jy** is empty and (b) one of them, say
V;;‘*, is empty. In subcase (a), we shall traverse the boundalRf otlockwisely starting

at the vertex next ta, to triangulate the area between the boundariRofand the convex

hull of V. Similarly, for V™. Add edges between the two convex chains to form
CH(V™), and finally add edges from or y to the vertices ofCH(V **) accordingly to
completely triangulat&®™. (Refer to Part (a) of figure 7 for the algorithm.) In subcase (b),
we traverse the boundary &, clockwisely starting at the vertex nextyoto triangulate

the area between the boundaryRf and the convex hull o%,{~*, then add edges from

to the convex hull of\/x*;,‘* and add edges fromto the remaining vertices (ﬁH(VXny‘*)

to completely triangulatdR*. (Refer to Part (b) of figure 7 for the algorithm.) Finally,

we use any method to triangula® . Thus, the area determined b’y;* UV U i{X, v}

is completely triangulated. The above triangulation can always be done by our algorithm
sinceR is a connected polygonal region that is weakly visible from Let us consider
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Figure 6 An illustration for the proof.

the weight of infT (R)) andEy,. There are three types of the edgeJifR): Type 1 edge
has its both endpoints M * (resp. inV,*), Type 2 edge is eithexv; for vi € V,(** or
yvj for vj € Vi, and Type 3 edge is eithgm; for vi € V[ or Xvj for vj e V™.
By the thin property of condition (1), a Type 1 edge is shorter than any edgeaind
by the circle-disconnected property, an edge of Type 2 or Type 3 is also shorter than the
edge ofEy ending at the same vertex Vg,. Thus, the weight of il (R)) in R* is less
than the weight of these matched edge&gf By condition (2), the weight of remaining
edges ofEy, is less than or equal to that of those edges ofTinR)) in R~ including
Xy. Thus,w(int(T(R))) is less thanw(Ey), and hence the new triangulatidn(S) has
a weight less than that of the originllWT(S), a contradiction. ThusXy must belong
to anyMWT(S). O
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Figure 7. An illustration for the proof, wherév, v', v”, v"”) is the convex hull of/ =*,
4. The algorithm
SUB-MWT(S)
Input: S (a set of points in general position)| = n) and E(S) (the set of all edges
inS).

Output: SUB-MWT(S) (a subgraph oMWT(S)).

1. SUB-MWT(S) « .
2. FindGT(S) and store the edges gt by ascending length order.
3. While Egt # ¢ Do
(a) e < head Egr); (* the shortest edge in currefst *)
(b) Find the subseE, of E(S) crossed by,
(c) CallSuff(e, Eg);
(d) If Suff(e, E¢) = 1 ThenSUB-MWT(S) <« €; DeleteE,.
4. EndDo.

Procedure Suffe, Eg)

1. LetV™ be these vertices d, lie on one halfplane bounded by the line extendingnd
V~ be those vertices d, on the other halfplane. Sowt* by angular clockwisely at the
left endpoint ofe, and letV *' denote this sequence; Sttt by angular anti-clockwisely
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at the right endpoint og, and letV*" denote this sequence. S&t similarly and let
the resulting sequencesWe' andV . Revers&/*", denote by +", and revers¥/ ",
obtainV .

2. Find the diameterg(V*) andd(V ™).

3. If V*' is identical toV+" andd(V ) is less thanw(e) andV ~ lies outside the empty
ellipse areaA~ or V~! is identical toV—" andd(V*) is less tharmw(e) and V™ lies
outside the empty ellipse arée, thenSuff(e, E¢) < 1;

End-Suff.

Lemma 1. Algorithm SUB-MWT(S) produces a subgraph of MW$) in O(n®) time
and O(n?) space.

Proof: The correctness of the algorithm is due to Theorem 1 and the fact implied by the
sufficient condition that any edge produced®lyB-MWT(S) is shorter than any edge of
Ewm, thusitbelongst&T(S). Let us consider the time complexity of the algorithm. Step 1
takes constant time. Step 2 tak®gn®) time by a trivial greedy method (for simplicity

of the analysis). Step 3, the while-loopSUB-MWT(S), execute(n) times. Step (b)

of the while-loop take$(n?) time because there might ha@n?) line segments irEe.

The total time for this step in the entire algorithm is boundeddin®). ProcedureSuff

is calledO(n) times. Step 1 of5uff takesO(nlogn) time due to the sortings. Step 2
takesO(nlogn) time by first finding the convex hull and then finding the diameter. Step
3 takesO(n?) time to check the sufficient condition. That is, for each vetigr V-,
check ifv lies inside the empty ellipse area determined by vertic&sfinWe only need to

test two ellipsesEL,, y x and ELv;,X,y, wherev; andv} are the two vertices closest Byy

in the boundaryR™. This is because all other empty ellipse areas are contained by these
two. It takesO(n) time. Thus, the total time for procedusaiff in the entire algorithm is
bounded byO(n%). Steps (a) and (b) do not exce@in?). The time complexity of the
entire algorithm then follows. The Step (b) of Step 3 may yi@lth?) edges inE.. The
space complexity follows fronk (S) bounded byO(n?). O

Now, let us consider an algorithm for the second sufficient condition. Let the algorithm,
denoted bySUB-1-MWT(S), be the same a&SUB-MWT(S) except replacinguff(e, Ee)
by Suff — 1(e, Eg).

Procedure Suff-1€, Ee)

1. Find diameterd (V) andd(V ™), respectively.

2. Finddmin(V*, V7).

3. TestifVT is circle-disconnected w.r.ty, ~ and vice versa.

4, fd(VT) < dnin(V+, V7) andV T is circle-disconnected at(V~) < dmin(V, V)
andV~ is circle-disconnected, the3uff-1 < 1; ElseSuff-1 <~ 0

End-Suff-1.

Lemma 2. Algorithm SUB-1-MWT(S) produces a subgraph of MW®) in O(n?) time
and O(n?) space.
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Proof: The correctness of the algorithm is due to Theorem 2. We only need consider
the complexity ofSuff-1 since the rest is the same as in the proof of Lemma 1.\M_et
VTUV™. IttakesO(|V|) to identify V. It takesO(|V|log|V|) time to find the diameters

of VT andV~ and the minimum distance between the two s&is,(V*, V7). Note that
testing the circle-disconnected propertyof andV ~ takes at mosD (|V *| * |V ~|). Thus,

the entireSuff-1 takesO(|V|?) time and space. O

5. Concluding remarks

The new sufficient conditions for finding subgraph®W Tin this paper are totally different

from the previous known ones, which fall in two classes: (1) edges in gbirdlocal
optimal triangulations and (2j-skeleton and mutual nearest neighbors. Our conditions
given in Section 3 are characterized with local non-symmetric geometric property. We have
implemented an algorithm for identifyingWT-edges using the first sufficient condition.

We try point sets of size 50 and 200. For each size, we take the average over 10 randomly
generated point sets. We divided the algorithm in two steps. In the first step, we construct
the B-skeleton of the set witl§ = 1.17682. In the second step, we delete all those edges
crossing an edge #-skeleton, and then test our condition. The results show that when
the size is small (50), there is 22% increase w.r.t., the numbgrskeleton edges, and
when the size is large (200), there is 15% increase. We observe that when size of point set
becomes large, thestar-shapedondition becomes difficult to be satisfied due to many long
edges. We guess that if the exclusion condition (empty diamond area) is implemented in
our algorithm, the situation may improve, (Refer to the following figure for some example.)

Figure 8 Some example of experiment, where part (a) has 55 points and part (b) has 200 points. The solid lines
are B-skeleton and dashed lines are new edges by our method.
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