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Abstract. In this paper, two sufficient conditions for identifying a subgraph of minimum weight triangulation of
a planar point set are presented. These conditions are based on local geometric properties of an edge to be identified.
Unlike the previous known sufficient conditions for identifying subgraphs, such as Keil’sβ-skeleton and Yang and
Xu’s double circles, The local geometric requirement in our conditions is not necessary symmetric with respect
to the edge to be identified. The identified subgraph is different from all the known subgraphs including the newly
discovered subgraph: so-called the intersection of local-optimal triangulations by Dickerson et al. AnO(n3) time
algorithm for finding this subgraph from a set ofn points is presented.
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1. Introduction

Let S= {si | i = 0, . . . ,n− 1} be a set ofn points in a plane. For simplicity, we assume
that S is in general position so that no three points inS are colinear. Letsi sj for i 6= j
denote the line segment with endpointssi andsj , and letω(si sj ) denote the weight ofsi sj ,
that is the Euclidean distance betweensi andsj .

A triangulationof S, denoted byT(S), is a maximum set of non-crossing line segments
with their endpoints inS. It follows that the interior of the convex hull ofS is partitioned
into non-overlapping triangles. The weight of a triangulationT(S) is given by

ω(T(S)) =
∑

si sj ∈ T(S)

ω(si sj ).

A minimum weight triangulation, denoted byMWT, of S is defined as for all possible
T(S), ω(MWT(S)) = min{ω(T(S))}.
∗This work is partially supported by NSERC grant OPG0041629 and HKU funded project HKU 287/95E through
RGC firect allocation.
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MWT(S) is one of the outstanding open problems listed in Garey and Johnson’s book
(1979). The complexity status of this problem is unknown since 1975 [SH75]. A great deal
of works has been done to seek the ultimate solution of the problem. Basically, there are
two directions to attack the problem. The first one is to identify edges inclusive or exclusive
to MWT(S) (Cheng and Xu, 1995; Keil, 1994; Yang et al., 1994) and the second one is to
construct exactMWT(S) for restricted classes of point set (Anagnostou and Corneil, 1993;
Cheng et al., 1995; Gilbert, 1979; Klinesek, 1980). In the first direction, two subdirections
have been taken. It is obvious that the intersection of all possibleT(S)s is a subgraph of
MWT(S). Recently, Dickerson and Montague (1996) have shown that the intersection of all
local optimal triangulations ofS is a subgraph ofMWT(S). (A triangulationT(S) is called
k-gon local optimal, denoted byTk(S), if any k-sided simple polygon extracted fromT(S)
is an optimal triangulation for thisk-gon by those edges ofT(S) lying inside thisk-gon.)
Then, if theMWT(S) is unique, then the following inclusion property holds:⋂

T(S) ⊆
⋂

T4(S) ⊆ · · · ⊆
⋂

Tn−1(S) ⊆ MWT(S)

This approach has some flavor of global consideration whenk is increased, however, it
seems difficult to find the intersections ask is increased.

Gilbert (1979) showed that the shortest edge inS is in MWT(S). Yang et al. (1994)
showed that mutual nearest neighbors are also inMWT(S). Keil (1994) presented that the
so-calledβ-skeleton ofS for β = √2 is a subgraph ofMWT(S). Cheng and Xu (1996)
extended Keil’s result toβ = 1.17682. The edge identification ofMWT(S) seems to be
a promising approach and has the following merits. The more edges ofMWT(S) being
identified, the less disconnected components isS. Thus, it is possible that eventually all
these identified edges form a connected graph so that anMWT(S) can be constructed by
dynamic programming in polynomial time (Cheng et al., 1995). Moreover, it has been
shown in Xu and Zhou (1995) that the increase of the size of subgraph ofMWT(S) could
improve the performance of some heuristics.

The second direction is to construct exactMWT(S) for restricted classes of point setS.
Gilbert (1979) and Klinesek (1980) independently showed anO(n3) time dynamic program-
ming algorithm to obtain anMWT(S), whereS is restricted to a simplen-gon. Recently,
Anagnostou and Corneil (1993) gave anO(n3k+1) time algorithm to find anMWT(S), where
S is restricted onk nested convex polygons. Meijer and Rappaport (1993) later improved
the bound toO(nk) whenS is restricted onk non-intersecting lines. At the same time, it
was shown in Cheng et al. (1995) that if given a subgraph ofMWT(S) with k connected
components, then the completeMWT(S) can be computed inO(nk+2) time.

This paper can be classified as the first direction. The paper is organized as follows.
Section 2 surveys the recent results in this direction. Section 3 presents our sufficient
conditions. Section 4 proposes an algorithm for finding a subgraph ofMWT(S) using the
given sufficient conditions. Finally, we conclude our work.

2. A review of previous approaches

A trivial subgraph of theMWT(S) is the convex hull ofS, CH(S), since it exists in
any MWT(S). A simple extension of the above idea is the intersection of all possible
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triangulations ofS calledstable line segments(Mirzain et al., 1996), denoted by SL(S),
such that

SL(S) =
⋂

T(S)∈J

T(S),

whereJ denotes the set of all possible triangulations ofS. The structure properties and the
algorithms for findingSL(S) were discussed in (Mirzain et al., 1996).

A recent result obtained by Dickerson and Montague (1996) showed that a subgraph
LOT(S) of ∩T4(S) can be found inO(n4) time andO(n3) space. The following inclusion
relation holds:

CH(S) ⊆ SL(S) ⊆ LOT(S) ⊆
⋂

T4(S).

Another class of subgraphs ofMWT(S) was identified using some local geometric prop-
erties related to an edge (Cheng and Xu, 1996; Keil, 1994; Yang et al., 1994). Keil first
pointed out an inclusion condition for an edge inMWT(S), so-calledβ-skeleton.

Fact 1 (Keil, 1994). If x and y are the endpoints of an edge in the
√

2-skeleton of S, and
p,q, r, and s are four distinct points in S other than x and y with p and s lying on one side
and q and r on the other of the line extendingxy. Assumepq andrs crossxy, and pq does
not intersectrs. Then, either|pq| > |qr | or |rs| > |qr |. (Refer to part(a) of figure1.)

With the above Fact (calledremote length lemma), Keil proved that if the shaded disks are
empty of points ofS, xy is an edge of anyMWT(S). Thus,

√
2-skeleton(S) is a subgraph

(a) (b)

Figure 1. An illustration for the remote lemma of Keil (a) and YXY’s double circles (b).
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of MWT(S) which can be found inO(n logn) time andO(n) space. Theβ-value was
strengthened to 1.17682 in (Cheng and Xu, 1996).

Yang et al. (1994) showed that the mutual nearest neighbours inS are subgraph of an
MWT(S) and their result can be stated as follows.

Fact 2 (Yang et al., 1994).If any edgepq intersectingxy for p,q, x, y ∈ S satisfies the
following inequality:

ω(xy) ≤ min{ω(px), ω(py), ω(qx), ω(qy)},

thenxy is in any MWT(S).

(Refer to Part (b) of figure 1 for YXY’s condition.)
As shown in figure 1, both Keil’s

√
2-skeleton(S)and YXY’s double-circle are symmetric

with respect to edgexy. YXY’s condition also includes Gilbert’s result (Gilbert, 1979)
which stated that the shortest line segment among all the line segments with their endpoints
in Sbelongs to anyMWT(S).

In many cases, an edge ofMWT(S)may not have symmetric geometric property required
by sufficient conditions for identification. However, a simple extending of the known
methods to asymmetric can run into difficulty. The difficulty caused by non-symmetric can
be easily demonstrated by the following six-point set.

Figure 2 showed an example of six points such that|xs| + |xb| ≤ |rs| + |rb| and
|xy| ≤ |rb|, |ra|, and|rs|. Edgexy satisfies our sufficient conditions, howeverxy cannot
be detected by any previous inclusion method. In part (a) of figure 2, vertexr lies inside the
Keil’s as well as YXY’s empty circles, thusxy cannot be identified by these two methods.

(a) (b)

Figure 2. An example of a non-detectable edge for the known sufficient conditions.
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In part (b) of figure 2,rs is shorter thanab, thus, they do not swap in quadraliteral(arbs).
Edgera is shorter thanxs, thus, they do not swap in quadraliteral(axrs). Edgerb is shorter
than ys, thus, they do not swap in quadraliteral(sryb). Then,rs is an edge of a 4-gon
local optimaltriangulation. Hence,xy does not belong to the intersection of all 4-gon local
optimaltriangulations and cannot be identified by Dickerson and Montague’s method.

To extend the local geometric property to asymmetric, it seems unavoidable to put fur-
ther restriction on the ‘neighboring’ points of an identifying edge. We shall show these
restrictions in the next section.

3. New sufficient conditions

We first give several definitions related to the local geometric of an edgexy, then present
the sufficient conditions.

Definition. Let E(S) denote the set of all line segments with their endpoints inS. Let
Exy be the subset ofE(S), each of which crosses edgexy for x, y ∈ S. Let Vxy denote the
endpoint set ofExy, V+xy denote the subset ofVxy on the upper open halfplane bounded by
the line extendingxy, andV−xy denote that on the lower closed halfplane, i.e.,V−xy includes
{x, y}. Then,V+xy is called2star-shapedif the interior of any triangle4xvy for every
v ∈ V+xy does not contain a vertex inV+xy. Similarly we can define 2star-shapedfor V−xy.
(Refer to part (a) of figure 3.) LetV++xy denote the subset ofV+xy on the same side ofx along
the perpendicular bisectorBxy of xy, and letV+−xy denote the subset on the same side asy.
LetELvi ,v j ,y denotes the ellipstic area specified by focivi andv j with boundary pointy. Let
verticesvi ∈ V++xy ∪{x} andv j ∈ V+−xy ∪{y} be the foci (except simultaneouslyvi = x and
v j = y) and|yvi |+|yv j | as the fixed sum of the lengths.V+xy is calledellipse-disconnected
(w.r.t. V−xy) if for any vi andv j , |xy| < min{|xvi |, |yv j |} and no vertex inV−xy is contained
by the ellipsesELvi ,v j ,y ∪ ELvi ,v j ,x within the fan-area bounded by

→
viy and

→
vjx. (Refer to

part (b) of figure 3, where only the empty ellipse area related to pair (vi , v j ) is shown.)V+x,y

(a) (b)

Figure 3. An illustration for the definitions.
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Figure 4. An illustration of a thin set.

is calledcircle-disconnected(w.r.t. V−xy) if for any v ∈ V+xy, |xy| <min{|xv|, |yv|} and no
vertex inV−xy is contained by the circle withv as center and withvx or vy as radius within
the fan-area bounded by

→
vx and

→
vy. A similar definition can be made forV−xy.

Definition. Thediameterof V−xy (V+xy) is denoted byd(V−xy) (d(V+xy)). SetV+xy is called
thin if d(V+xy) < dmin(V−xy,V+xy), wheredmin(V−xy,V+xy) = min{vpvq | vp ∈ V+xy, vq ∈ V−xy}.
Similarly, define thin forV−xy. (Refer to figure 4 for the definition.)

Theorem 1. Edgexy is in every MWT(S) if (1)V+xy is2star-shaped and ellipse-disconnec-
ted and(2) ω(xy) = d(V−xy). (Refer to figure5.)

Proof: By contradiction. Suppose thatxy does not belong to anyMWT(S). Then, there
exists anMWT(S) such that some of its edges, denoted byEM (⊆ Exy), crossxy. Let V+∗xy
denote the endpoint set ofEM belonging toV+xy, andV−∗xy , belonging toV−xy. If we remove
EM from thisMWT(S), the resulting non-triangulated area, denotedR, is a connected region
with V+∗xy ∪V−∗xy ∪{x, y} as vertices. SinceV+∗xy is a subset ofV+xy, V+∗xy is also 2star-shaped
and ellipse-disconnected, and sinceV−∗xy is a subset ofV−xy, ω(xy) = d(V−∗xy ) is also hold.
Note that the number of vertices contained inR is |V+∗xy | + |V−∗xy | + 2, which is|EM | + 3.
Then, the number of internal edges ofR for any triangulation ofR is also|EM |. Now, we
shall build a triangulationT(R) such thatT(R) containsxy as an edge andω(int(T(R)) is
less thanω(EM), where int(T(R))) is the internal edges ofT(R).

To do so, we add edgesvi x clockwisely atx and add edgesv j y anti-clockwisely aty,
wherevi ∈ V++∗xy andv j ∈ V+−∗xy , andV++∗xy andV+−∗xy are the left subset and the right
subset ofV+∗xy along Bxy, respectively; Addxv′j , wherev′j is the last vertex ofV+−∗xy in
anti-clockwisely aty. Then, addxy so that the portion ofR above the line extendingxy,
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Figure 5. An illustration for sufficient conditions.

R+, is triangulated. This can be realized because the 2star-shaped property ofV+∗xy . We
further add edges to triangulate the portion ofRbelowxy, R−, by any method. Thus,T(R)
is completed.

We only need compare the weight of the internal edges ofT(R) with the weight ofEM

since the two triangulations ofR shared the same boundary edges. The number of internal
edges ofT(R) is equal to that ofEM , which allows us to build a match between them. If
|V+∗xy | = 0, we have done. If|V+∗xy | = 1, then by condition (1), the edges ofEM ending
at vi (resp.v j ) is longer thanxvi (resp. yv j ), andxvi (resp. yv j ) is longer thanxy, thus
any edge ofEM is longer thanxy. Furthermore, by condition (2) any edge whose both
endpoints are inV−xy is shorter than any edge inEM . Thus, any edge in int(T(R)) is shorter
than any edge inEM , we have done. If|V+∗xy | ≥ 2, we shall consider two subcases: (a)
one ofV++∗xy andV+−∗xy , sayV++∗xy , is empty and (b) none of them is empty. In subcase
(a), all these edges of int(T(R)) abovexy arev j y for v j ∈ V+−∗xy . By condition (1), every
v j y is shorter than these ofEM ending atv j . Since there are|V+−∗xy | − 1 such edges,
the unmatchedEM is a size of|V−∗xy |, i.e., there must have|V−∗xy | edges includingxy to
completely triangulate the remaining portion ofR. Note by condition (2) that each of these
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added edges inR− is shorter than or equal to any ofEM . Thus,ω(EM) > ω(int(T(R))). In
subcase (b), there exists an edge of int(T(R)) crossingBxy. Let it beyv′x. Let v′i v

′
j be the

edge of the boundary ofR+ crossed byBxy. We first matchyv′i andyv′j with the two edges
of EM ending atv′i andv′j and sharing the other endpoint inV−∗xy . This match is always
possible because edgev′i v

′
j must belong to anyMWT(S), hencev′i v

′
j must belong to a

triangle ofT(R) as well as a triangle ofEM of MWT(S). By the empty ellipse property
of condition (1),ω(|yv′i | + |yv′j |) is less than that of these two matched edges inEM . For
the remaining edges of int(T(R)), we matchvi x with an edge ofEM ending atvi andv j y
with an edge ofEM ending atv j (if it possible). It is implied by condition (1) that an edge
of EM ending atvi (resp.v j ) is longer thanxvi (resp.yv j ) (because the circle withvi (v j )
as center and withxvi (yv j ) as radius inR− is contained by the empty ellipse area). The
remaining edges of int(T(R)) are matched withxy and those edges whose both endpoints
in V−∗xy . The remaining match is always possible as the same reason described in subcase
(a). By condition (2) and the fact that any edge ofEM is longer thanxy, the weight of these
remaining edges of int(T(R)) is less than or equal to that of the remaining edges inEM .
Thus,ω(int(T(R))) is less thanω(EM), a contradiction. 2

(Refer to figure 6, which shows an example of the match between the two sets of internal
edges ofR in the proof. In this example,V+∗xy = {1, 2, 3, 4} andV−∗xy = {5, 6, 7}. EM =
{a, b, c, d, e, f }. The dashed line segments are in the new triangulationT(R), they are
{x2, x6, y3, y2, y6, xy}. Note that|c| + |d| > |y2| + |y3| due to the ellipse empty area
property. One possible matching for the rest edges can be: (x6,a), (y6, f ), (x2, b), and
(xy, e)).

Theorem 2. Edgexy is in every MWT(S) if (1) V+xy is thin and circle-disconnected, and
(2) ω(xy) = d(V−xy).

Proof: Let the notations used in the following analysis be the same as those in the proof
of Theorem 1. We shall build a newT(S) with xy as an edge such that its weight is less
thanMWT(S). If |V+∗xy | ≤ 1, thenxy is in anyMWT(S) obviously. If |V+∗xy | ≥ 2, then
we consider two subcases: (a) none ofV++∗xy andV+−∗xy is empty and (b) one of them, say
V+−∗xy , is empty. In subcase (a), we shall traverse the boundary ofR+, clockwisely starting
at the vertex next tox, to triangulate the area between the boundary ofR+ and the convex
hull of V++∗xy . Similarly, for V+−∗xy . Add edges between the two convex chains to form
CH(V+∗), and finally add edges fromx or y to the vertices ofCH(V+∗) accordingly to
completely triangulateR+. (Refer to Part (a) of figure 7 for the algorithm.) In subcase (b),
we traverse the boundary ofR+, clockwisely starting at the vertex next toy, to triangulate
the area between the boundary ofR+ and the convex hull ofV+−∗xy , then add edges fromy
to the convex hull ofV+−∗xy and add edges fromx to the remaining vertices ofCH(V+−∗xy )

to completely triangulateR+. (Refer to Part (b) of figure 7 for the algorithm.) Finally,
we use any method to triangulateR−. Thus, the area determined byV+∗xy ∪ V−∗xy ∪ {x, y}
is completely triangulated. The above triangulation can always be done by our algorithm
sinceR is a connected polygonal region that is weakly visible fromxy. Let us consider
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Figure 6. An illustration for the proof.

the weight of int(T(R)) andEM . There are three types of the edges inT(R): Type 1 edge
has its both endpoints inV+∗xy (resp. inV−∗xy ), Type 2 edge is eitherxvi for vi ∈ V++∗xy or
yv j for v j ∈ V+−∗xy , and Type 3 edge is eitheryvi for vi ∈ V++∗xy or xv j for v j ∈ V+−∗xy .
By the thin property of condition (1), a Type 1 edge is shorter than any edge ofEM and
by the circle-disconnected property, an edge of Type 2 or Type 3 is also shorter than the
edge ofEM ending at the same vertex ofV+xy. Thus, the weight of int(T(R)) in R+ is less
than the weight of these matched edges ofEM . By condition (2), the weight of remaining
edges ofEM is less than or equal to that of those edges of int(T(R)) in R− including
xy. Thus,ω(int(T(R))) is less thanω(EM), and hence the new triangulationT(S) has
a weight less than that of the originalMWT(S), a contradiction. Thus,xy must belong
to anyMWT(S). 2
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(a) (b)

Figure 7. An illustration for the proof, where(v, v′, v′′, v′′′) is the convex hull ofV+−∗.

4. The algorithm

SUB-MWT(S)
Input: S (a set of points in general position),|S| = n) and E(S) (the set of all edges

in S).
Output:SUB-MWT(S) (a subgraph ofMWT(S)).

1. SUB-MWT(S)← ∅.
2. FindGT(S) and store the edges inEGT by ascending length order.
3. While EGT 6= ∅ Do

(a) e← head(EGT); (* the shortest edge in currentEGT *)
(b) Find the subsetEe of E(S) crossed bye;
(c) CallSuff(e, Ee);
(d) If Suff(e, Ee) = 1 ThenSUB-MWT(S)← e; DeleteEe.

4. EndDo.

Procedure Suff(e, Ee)

1. LetV+ be these vertices ofEe lie on one halfplane bounded by the line extendinge, and
V− be those vertices ofEe on the other halfplane. SortV+ by angular clockwisely at the
left endpoint ofe, and letV+l denote this sequence; SortV+ by angular anti-clockwisely
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at the right endpoint ofe, and letV+r denote this sequence. SortV− similarly and let
the resulting sequences beV−l andV−r . ReverseV+r , denote byV+r , and reverseV−r ,
obtainV−r .

2. Find the diametersd(V+) andd(V−).
3. If V+l is identical toV+r andd(V−) is less thanω(e) andV− lies outside the empty

ellipse areaA− or V−l is identical toV−r andd(V+) is less thanω(e) and V+ lies
outside the empty ellipse areaA+, thenSuff(e, Ee)← 1;

End-Suff.

Lemma 1. Algorithm SUB-MWT(S) produces a subgraph of MWT(S) in O(n3) time
and O(n2) space.

Proof: The correctness of the algorithm is due to Theorem 1 and the fact implied by the
sufficient condition that any edge produced bySUB-MWT(S) is shorter than any edge of
EM , thus it belongs toGT(S). Let us consider the time complexity of the algorithm. Step 1
takes constant time. Step 2 takesO(n3) time by a trivial greedy method (for simplicity
of the analysis). Step 3, the while-loop inSUB-MWT(S), executesO(n) times. Step (b)
of the while-loop takesO(n2) time because there might haveO(n2) line segments inEe.
The total time for this step in the entire algorithm is bounded byO(n3). ProcedureSuff
is calledO(n) times. Step 1 ofSuff takesO(n logn) time due to the sortings. Step 2
takesO(n logn) time by first finding the convex hull and then finding the diameter. Step
3 takesO(n2) time to check the sufficient condition. That is, for each vertexv in V−,
check ifv lies inside the empty ellipse area determined by vertices inV+. We only need to
test two ellipses:ELv′i ,y,x andELv′j ,x,y, wherev′i andv′j are the two vertices closest toBxy

in the boundaryR+. This is because all other empty ellipse areas are contained by these
two. It takesO(n) time. Thus, the total time for procedureSuff in the entire algorithm is
bounded byO(n3). Steps (a) and (b) do not exceedO(n2). The time complexity of the
entire algorithm then follows. The Step (b) of Step 3 may yieldO(n2) edges inEe. The
space complexity follows fromE(S) bounded byO(n2). 2

Now, let us consider an algorithm for the second sufficient condition. Let the algorithm,
denoted bySUB-1-MWT(S), be the same asSUB-MWT(S) except replacingSuff(e, Ee)

by Suff− 1(e, Ee).

Procedure Suff-1(e, Ee)

1. Find diametersd(V+) andd(V−), respectively.
2. Finddmin(V+,V−).
3. Test ifV+ is circle-disconnected w.r.t.,V− and vice versa.
4. If d(V+) < dmin(V+,V−) andV+ is circle-disconnected ord(V−) < dmin(V+,V−)

andV− is circle-disconnected, thenSuff-1← 1; ElseSuff-1← 0

End-Suff-1.

Lemma 2. AlgorithmSUB-1-MWT(S) produces a subgraph of MWT(S) in O(n3) time
and O(n2) space.
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Proof: The correctness of the algorithm is due to Theorem 2. We only need consider
the complexity ofSuff-1 since the rest is the same as in the proof of Lemma 1. LetV =
V+ ∪V−. It takesO(|V |) to identify V . It takesO(|V | log |V |) time to find the diameters
of V+ andV− and the minimum distance between the two sets,dmin(V+,V−). Note that
testing the circle-disconnected property ofV+ andV− takes at mostO(|V+| ∗ |V−|). Thus,
the entireSuff-1 takesO(|V |2) time and space. 2

5. Concluding remarks

The new sufficient conditions for finding subgraphs ofMWTin this paper are totally different
from the previous known ones, which fall in two classes: (1) edges in all 4-gon local
optimal triangulations and (2)β-skeleton and mutual nearest neighbors. Our conditions
given in Section 3 are characterized with local non-symmetric geometric property. We have
implemented an algorithm for identifyingMWT-edges using the first sufficient condition.
We try point sets of size 50 and 200. For each size, we take the average over 10 randomly
generated point sets. We divided the algorithm in two steps. In the first step, we construct
theβ-skeleton of the set withβ = 1.17682. In the second step, we delete all those edges
crossing an edge ofβ-skeleton, and then test our condition. The results show that when
the size is small (50), there is 22% increase w.r.t., the number ofβ-skeleton edges, and
when the size is large (200), there is 15% increase. We observe that when size of point set
becomes large, the 2star-shapedcondition becomes difficult to be satisfied due to many long
edges. We guess that if the exclusion condition (empty diamond area) is implemented in
our algorithm, the situation may improve, (Refer to the following figure for some example.)

(a) (b)

Figure 8. Some example of experiment, where part (a) has 55 points and part (b) has 200 points. The solid lines
areβ-skeleton and dashed lines are new edges by our method.
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