On the M in inum Spanning Tree Determ ined by n Points in the Un it Square

Ye Jichang（叶继昌）Xu Yinfeng（徐寅峰）Xu Chengxian（徐成贤） （X ían J iaotong University，X ían，710049）

Abstract

Let P_{n} be a set of n points in the unit square $S, l\left(P_{n}\right)$ denoe the length of the m in um spanning tree of P_{n} ，and $$
C_{n}=\max _{P_{n} \leq S} l\left(P_{n}\right), \quad n=2,3, \cdots
$$

In th is paper，the exact value of C_{n} for $n=2,3,4$ and the corresponding configurations are given A dditionally，the conjectures of the configuration for $n=5,6,7,8,9$ are proposed

Keywords m in m um spanning tree； maxim in problem；configuration

§ 1 In troduction

A minimum spanning tree（MST）is widely applied to the fields of computer， communication，nerwork and so on． M any results have been obtaines，but few of them deal with the worst－case analysis for the given finite region．In fact，it is a maxim in problem（see ［1］－［3］）．This paper is devoted to the worst－case of M ST in the unit square

Let S denote the unit square，P_{n} the set of n point in $S, l\left(P_{n}\right)$ be the length of aMST of P_{n} The distance betw een two points is of Euclidean sense Our problem is to detem ine C_{n} defined as follow s

$$
C_{n}=\max _{P_{n} \leq S} l\left(P_{n}\right), \quad n=2,3, \cdots
$$

and the point set location of P_{n}^{*} for which

$$
C_{n}=l\left(P_{n}^{*}\right), \quad P_{n}^{*} \subseteq S
$$

is called the configuration of C_{n} Let T_{n} demote the set of all possible spanning trees w ith vertices P_{n} and the length of t for $t \in T_{n}, l(t)$ ，we have

$$
C_{n}=\max _{P_{n} \leq S} \min _{t \in T_{n}} l(t)
$$

$T{ }_{n}^{*}$ is called an optimal tree if the length of T_{n}^{*} equals C_{n}
This paper is organized as follow s ：in Section 2，the configration of C_{n} in the general case is discussed The special cases for $n=2,3,4$ are investigated in Section 3．Finally，the conjectures for $n=5,6,7,8,9$ are proposed in Section 4.

Received Sept 8， 1998

§ 2 General Case

Let $P_{n}{ }^{*} \subseteq S, C_{n}=l\left(P_{n}{ }^{*}\right), C H\left(P_{n}{ }^{*}\right)$ be the convex hull of $P_{n}{ }^{*}$ and $V\left(P_{n}{ }^{*}\right)=P_{n}{ }^{*} \cap C H\left(P_{n}^{*}\right)$.
Theorem 1 On every edge of S there must be at least one point of P_{n}^{*}.
Proof A s shown in Fig 1(a), suppose that no points in P_{n}^{*} is on $A D$ and $p{ }^{*}$ in P_{n}^{*} is the nearest point from AD. Let straight line $l_{p}{ }^{*}$ be parallel to DC and \vec{P} be the crossing point of AD and $l_{p}{ }^{*}$. If we only move p^{*} to \vec{P}, it is obvious that

$$
\left.l\left(P_{n}^{*}\right)<l\left(P_{n}^{*} \cup\{\vec{p}\} \bigvee p^{*}\right\}\right) .
$$

This is a contradiction with the definition of $P{ }_{n}{ }^{\star}$.

(a)

(b)

Fig. 1
Theorem 2 Points in $V\left(P_{n}^{*}\right)$ must be on the boundary of S.
Proof Suppose that $p^{*} \in V\left(P_{n}^{*}\right)$ and p^{*} is an interior point of S. By Theorem 1, let p_{i} and p_{j} be the two points in $V\left(P_{n}^{*}\right)$ that connect with p^{*} in $\mathrm{CH}\left(P_{n}^{*}\right)$ and on the boundary of S. Let straight line $l_{p}{ }^{*}$ be the bisector of angle $p_{i} p^{*} p_{j}$. If we only move $p{ }^{*}$ in direction as show n in Fig (b). W rite \vec{p} the crossing point that $l_{p}{ }^{*}$ and S, we have

$$
l\left(P_{n}^{*}\right)<l\left(P_{n}^{*} \cup \vec{p} \mathrm{X}^{*}\right)
$$

which is a contradiction with the definition of P_{n}^{*}. Theorem $3 C_{n+1} \geq C_{n}$
It is an obvioud conclusion, so the proof is om itted
Theorem $4 \lim _{n \rightarrow \infty} C_{n}=\infty$.
Proof Divide the unit square into $(n-1)^{2}$ small equal squares with edge lengh $1 /(n-1)$. The total num ber of vertices of all m all square is n^{2}. Consider theM ST w ith the n^{2} vetices $P_{n^{2}}$, it is obviius that $l\left(P_{n^{2}}^{*}\right)$ is $n+1$. Therefore

$$
l\left(P_{n^{2}}^{*}\right) \geq l\left(P_{n^{2}}\right)=n+1 .
$$

It follow s from Theorem 3 that $\lim _{n \rightarrow \infty} C_{n}=\infty$.

§ 3. Special Cases

The objective of this section is to detem ine the lication of P_{n}^{*} for $n=2,3,4$.

Fig. 2
Theoren: : For $n=2,3,4$ the location of P_{n}^{*} is show n in Fig 2
Proof For $n=2$ the location is trivial and $C_{2}=\sqrt{2}$. It is sufficiency on ly to p rove $n=3$ and $n=4$.

First consider the case $n=3$, we shall p rove that the location P_{3}^{*} as show n in F ig. $2(\mathrm{~b})$ is optim al and $C_{3}=1+\frac{\sqrt{5}}{2}$.

Fig. 3
Form Theorem 1 and Theorem 2 we know that $\mathrm{CH}\left(P_{3}^{*}\right)$ is a triangle and there must be one point located at a corner of the square Let points A, v_{2}, v_{3} be in P_{3}^{*}, as show n in Fig 3 (a). We clam that triangle $A \nu_{2 v_{3}}$ is an isosceles triangle Conversely suppose that triangle $A v_{2} v_{3}$ is not an iso sceles triangle If $v_{2} v_{3}$ is the longest edge, i e $\left|A v_{3}\right|<\left|v_{2} v_{3}\right|$ and $\left|v_{2} A\right|<\left|v_{2 v_{3}}\right|(|A B|$ denotes the Euclidean distance between A and $B)$, then $l\left(P_{3}^{*}\right)=$ $\left|A v_{3}\right|+\left|A v_{2}\right|$ Moving the point v_{3} on the edge $D C$ to v_{2}^{*} slightly enough we get $\overrightarrow{P_{3}}=\left\{A, v_{2}, v_{3}^{*}\right\}$ such that $\left|A v_{3}^{*}\right| \leq\left|v_{3}^{*} v_{2}\right|$ and $\left|v_{2 A}\right| \leq\left|v_{3}^{*} v_{2}\right|$. So we have $l\left(\overrightarrow{P_{3}}\right)>l\left(P_{3}^{*}\right)$. This is a contradiction with the definition of P_{3}^{*}. Similarwe can give a contradiction that either $A v_{2}$ or $A v_{3}$ is the longest one So the triangle $A v_{2} v_{3}$ is an iso sceles triangle

Suppose $\left|A v_{3}\right|=\left|A v_{2}\right|$, we can prove that triangle $A v_{2} v_{3}$ is an equilateral triangle and $l\left(P_{3}^{*}\right)=2(\sqrt{6}-\sqrt{2})$.

If point v_{3} is in $D E$, as show n in Fig 3(b), it is obvious that

$$
\left|v_{2} v_{3}\right|>\left|A v_{3}\right|=\left|A v_{2}\right|
$$

Hence, we have

$$
\left|A v_{3}\right|+\left|A v_{2}\right|<|A E|+\left|A E^{\prime}\right|=2(\sqrt{6}-\sqrt{2}) .
$$

Let $|D E|=\left|B E^{\prime}\right|=2-\sqrt{3}$, then $|A E|=\left|A E^{\prime}\right|+\left|E E^{\prime}\right|=\sqrt{6}-\sqrt{2}$. If point v_{3} is in EC, as show n in $\mathrm{Fig} 3(\mathrm{c})$, then
$\left|v_{2} v_{3}\right|<\left|A v_{3}\right|=\left|A v_{2}\right|, \quad\left|D v_{3}\right|=\left|B v_{2}\right|>|D E|=\left|B E^{\prime}\right|=2-\sqrt{3}$,
$\left|A v_{3}\right|=\left(1+\left(|D E|+\left|E v_{3}\right|\right)^{2}\right)^{1 / 2}, \quad|A E|=\left(1+|D E|^{2}\right)^{1 / 2}$,
$|A E|+\left|E E^{\prime}\right|-\left|A v_{3}\right|-\left|v_{2} v_{3}\right|=\left(\left|E E^{\prime}\right|-\left|v_{2} v_{3}\right|\right)-\left(\left|A v_{3}\right|-|A E|\right)$

$$
=\sqrt{2}\left|E v_{3}\right|-\frac{2|p E| \cdot\left|E v_{3}\right|+\left|E v_{3}\right|^{2}}{\sqrt{1+|D E|^{2}}+\sqrt{1+\left(|D E|+\left|E v_{3}\right|\right)^{2}}}
$$

$$
>\sqrt{2}\left|E v_{3}\right|-\frac{\left|E v_{3}\right|\left(2|D E|+\left|E v_{3}\right|\right)}{2 \sqrt{1+|D E|^{2}}}
$$

$$
>\left|E v_{3}\right|\left(\sqrt{2}-\frac{1}{2}\left(2|D E|+\left|E v_{3}\right|\right)\right)
$$

$$
=\left|E v_{3}\right|\left(\sqrt{2}-\frac{1}{2}\left(2-\sqrt{3}+\left|D v_{3}\right|\right)\right)
$$

$$
\geq\left|E v_{3}\right|\left(\sqrt{2}-\frac{3-\sqrt{3}}{2}\right)
$$

$$
>\left|E v_{3}\right|(\sqrt{2}-1)>0
$$

So, we have $\left|A v_{3}\right|+\left|v_{2} v_{3}\right|<|A E|+\left|E E^{\prime}\right|=2(\sqrt{6}-\sqrt{2})$.

(a)

(b)

Fig. 4
Suppose that $\left|A v_{3}\right|=\left|v_{2} v_{3}\right|$ As shown in Fig 4, the definition of point E is as above and point M is the m idpoint of $D C$. If point v_{2} is on $D E$, we have

$$
\left|A v_{3}\right|=\left|v_{2} v_{3}\right|<\left|A v_{2}\right|,\left|A v_{3}\right|<|A E|,\left|A v_{2}\right|+\left|v_{2} v_{3}\right|<|A E|+\left|A E^{\prime}\right|
$$

If point v_{3} is on $E M$, as show n in Fig $4(\mathrm{~b})$, then $\left|A v_{3}\right|=\left|v_{3} v_{2}\right|>\left|A v_{2}\right|$, we shall show that $\left|A v_{3}\right|+\left|A v_{2}\right|<|A M|+|A B|=1+\frac{\sqrt{5}}{2}$.

Let $\left|v_{z} M\right|=y$, we have

$$
\begin{aligned}
& 0<y<\sqrt{3}-\frac{3}{2},\left|D v_{3}\right|=\frac{1}{2}-y,\left|v_{3} C\right|=\frac{1}{2}+y \\
& \left|A v_{3}\right|=\sqrt{1+\left|D v_{3}\right|^{2}}=\sqrt{1+\left(\frac{1}{2}-y\right)^{2}}=\frac{1}{2} \sqrt{5-4 y+4 y^{2}} \\
& \left|C v_{2}\right|=\sqrt{\left|A v_{3}\right|^{2}-\left|v_{3} C\right|^{2}}=\sqrt{1+\left(\frac{1}{2}-y\right)^{2}-\left(\frac{1}{2}+y\right)^{2}}=\sqrt{1-2 y}
\end{aligned}
$$

$$
\begin{aligned}
& \left|v_{2} B\right|=1-\left|C v_{2}\right|=1-\sqrt{1-2 y}, \\
& \left|A v_{2}\right|=\sqrt{1+\left|B v_{2}\right|^{2}}=\sqrt{1+(1-\sqrt{1-2 y})^{2}}=\sqrt{3-2 y-2 \sqrt{1-2 y}} .
\end{aligned}
$$

Noticing the inequality

$$
\sqrt{1-2 y}>1-y-2 y^{2}, \quad 0<y<\sqrt{3}-\frac{3}{2}
$$

we get

$$
\begin{aligned}
|A M|-\left|A v_{3}\right| & =\frac{\sqrt{5}}{2}-\frac{\sqrt{5-4 y+4 y^{2}}}{2}=\frac{4 y(1-y)}{2\left(\sqrt{5}+\sqrt{5-4 y+4 y^{2}}\right)}>\frac{y(1-y)}{\sqrt{5}} \\
\left|A v_{2}\right|-|A B| & =\sqrt{3-2 y-2 \sqrt{1-2 y}-1} \\
& =\frac{2-2 y-2 \sqrt{1-2 y}}{1+\sqrt{3-2 y-2 \sqrt{1-y}}} \\
& <\frac{2-2 y-2 \sqrt{1-2 y}}{2} \\
& =1-y-\sqrt{1-2 y}<1-y-\left(1-y-2 y^{2}\right) \\
& =2 y^{2}<\frac{y(1-y)}{\sqrt{5}} .
\end{aligned}
$$

So, $|A M|-\left|A v_{3}\right|>\left|A v_{2}\right|-|A B|$, i e $\left|A v_{2}\right|+\left|A v_{3}\right|<|A M|+|A B|=1+\frac{\sqrt{5}}{2}$.
Observing that $\left.2(\sqrt{6}-\sqrt{2})<1+\frac{\sqrt{5}}{2}\right)$ is follow s from above discussion that the location of P_{3}^{*} is as show n in Fig. 2(b) and $C_{3}=1+\frac{\sqrt{5}}{2}$.

For $n=4 \mathrm{we}$ shall prove that the location of P_{4}^{*} is as show n in $\mathrm{Fig} 2(\mathrm{c})$ and $C_{4}=3$.
It's know n from Theorem 1 that there are at least two points on the boundary of the square

(c)

Fig. 5
First we suppose that there are two points of P_{4}^{*} on the boundary. By Theorem 1 and 2 we know that the two pointsmust coincidew ith A and C as shown Fig. 5 (a) and the other two points of P_{4}^{*} are on the line segment $A C$. Hence $l\left(P_{4}^{*}\right)<3$.

Secondly, suppose that there are three points on the boundary of S. From Theorem 1 and 2, we know that the hull of P_{4}^{*} is a triangle and there is one point of P_{4}^{*} in the interior of the
triangle as Fig. 5 (b).
Lemma Given any triangle $A B C$, such that $|A B| \geq|B C| \geq|A C|$ and D is in the interior of the triangle $A B C$. Then the follow ing inequality holds

$$
|A D|+|B D|+|C D| \leq 2|A B|
$$

Proof As shown Fig 5 (c) we construct an ellipse through point D with the foci at points A and B and a circle w ith the center C and the radium $|C D| \mathrm{W}$ rite D^{\prime} and $D^{\prime \prime}$ the intersections of $C A$ and the ellipse and $C B$ and the circle respectively. It is obvious that $|C D|<\left|C D^{\prime}\right|<|C A|$ So

$$
\begin{aligned}
|A D|+|B D|+|C D| & \leq\left|A D^{\prime}\right|+\left|B D^{\prime}\right|+\left|D^{\prime} C\right| \\
& =|A C|+\left|B D^{\prime}\right|<|A C|+|A B| \\
& \leq 2|A B|
\end{aligned}
$$

By the Lemma and the fact that the longest edge of the triangle $A v_{3} v_{2}$ in Fig $5(\mathrm{~b})$ is less than $\sqrt{2}$, we get $l\left(P_{4}^{*}\right)<2 \sqrt{2}<3$.

Finally suppose that the four points of P_{4}^{*} are allon boundary of the unit square and there is at least one point on each edge The convex hull of P_{4}^{*} is a quadrilateral or a degenerate quadrilateral which is a right triangle Let $l_{1} \leq l_{2} \leq l_{3} \leq l_{4}$ denote the edge lengths of the quadrilateral Obviously $l_{1}+l_{2}+l_{3}+l_{4} \leq 4$. If $l_{4} \geq 1$ then

$$
4 \geq l_{1}+l_{2}+l_{3}+l_{4} \geq l_{1}+l_{2}+l_{3}+1,
$$

i e $l_{1}+l_{2}+l_{3} \leq 3$.
If $l_{4}<1$ then $l_{1}+l_{2}+l_{3}<3$. So $l_{1}+l_{2}+l_{3}=3$ if and only if $l_{1}=l_{2}=l_{3}=l_{4}=1$. This implies that the location of P_{4}^{*} is F ig 2 (c).
§ 4. Con iectures for $n=5,6,7,8,9$

Fig. 1

```
\(n=5, A E=B E=A B, C_{5}=2+3 \sin (\pi / 12)=3.0352276 \cdots\);
\(n=6, A E=B E=A B, E C=F C, C_{6}=3.13513 \cdots\);
\(n=7, D C=D E=G C=G E=G B=G F=F E=B C, C_{7}=3.33583 \cdots\);
\(n=8, A F=F G=G A=G B=G H=H B=H C=H E=E H=E D=D F=E F\),
``` \(C_{8}=3.62346631 \cdots\) :
\(n=9, E, F, G, H\) are the m idpoints of \(C D, D A, A B, B C\) respectively and \(I\) is the crossing point with \(E G\) and \(H F, C_{9}=4\).

The values of \(C_{n}(n=2,3, \cdots, 9)\) are listed in Table 1.

\section*{Table 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline\(n\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline\(C_{n}\) & \(1.4142 \cdots\) & \(21180 \cdots\) & 3 & \(3.0352 \cdots\) & \(1351 \cdots\) & \(3.3358 \cdots\) & \(3.6234 \cdots\) & 4 \\
\hline
\end{tabular}

\section*{§ 5. Conclusion and Remark}

We have presented four general results for the whole construction on M ax mum M ST detem ined by \(n\) points in the unit square (see Theorem 1 to 4). But it is not enough to understand the location of \(P_{n}^{*}\).

Some related problem s rem ain open
1) W hat is the asymp totic value of \(C_{n}\) ?
2) A re the longest edges in optimal tree unique
3) Does there exist an optimal tree in which the degree of the nodes is no more than 4 ?
4) How is a maximum MT detem ined by \(n\) points in other kinds of regions, such as unit circle, equilateral triangle ans so on?

\section*{References}
[1] J. Schaer, The densest packing of 9 circles in a square, Canad M ath Bull 8(1965) 273-277.
[2] G. V alette, A better packing of the equal circles in a square, North-Holland, Discrete M ath 76(1989)57-59.
[3] D. Z Du and F. K. Hw ang, A n new bound for the steiner ratio, Trans Amer M ath Soc , 278 (1983) 137-148
[4] M ichel Gondran and M ichek M inoux, Graphs and algorithm s, John W iley and Sons, 1984.```

