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ON THE MINIMUM DISTANCE 

DETERMINED BY n ( <  7) POINTS 
IN AN ISOSCELE RIGHT TRIANGLE 
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(School of Management, Xi'an Jiaoton 9 University, Xi'an 710049, China) 

Abstrac t  

Let T denote a finite set of points in a unit isoscele right triangle (i.e., the right sides are 

both one), f (T)  the minimum distance between pairs of points of T ,  and 

fA(~)= max f(T). 

In this paper, the exact vMues of fz~(n) for 2<n<7 and the corresponding configurations are given. 
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1.  I n t r o d u c t i o n  

The  problem of the minimum distance determined by n points in some specific bounded 
convex regions was studied for a long time, especially the regions are squares or circles. The 
exact values of the maximum distance determined by n points in a unit square or a unit 
circle are known only for some small n [1-4]. 

For a unit  square and the cases of n _> 10 and n # 16, the exact values of the max imum 
distance are unknown. For a unit circle and the cases of n > 11, the exact values of the 
max imum distance are unknown. Some bounds of the exact values of the max imum distance 
determined by  n points in a unit square and a unit circle were given [5,6], and there are some 
conjectures on "the best" configurations for some small integer n. 

In  this paper ,  the maximum distance determined by  n points in a unit  isoscele right 
tr iangle for 2 < n < 7 is discussed. The  exact values and the corresponding configurations 
are given for 2 < n _< 7. From the results obtained in this paper ,  the relationship of the 
exact values and the corresponding configurations between a unit square and a unit  isoscele 
right tr iangle is obvious for 2 < n < 7. 

Let  R be a convex region, S be a finite set of points in R, fR(S)  the min imum distance 
between pairs of points of S, and 

IR( ) = IR(s ) .  
IISll=n 
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if R is a unit  square, we use f(n) instead of fR(n). I f  R is a ~ t  isoscele right triangle, we 
use f A(n) instead of fR(n). 

If fR(S) = fR(n), then we use MR(n) to denote the corresponding configuration. Sim- 
IIS,=~ 

ilarly we have M(n) for the unit square and MLx (n) for the unit  isoscele right triangle. 
In  the next  pa r t  of  this paper,  the following ]emma is often used, which is obvious. 
L e m m ~  1.1.  I f  the distance between any two vertices of  a closed convex polygon is 

less t han  or equal to m,  then the distance between the two points lying in or on the polygon 
can be  equal to  m only when points are two vertices. 

2 .  F o r  2 < k < 7  

T h e  values of  fA(n) for 2 < n < 7 are given in Table 1 and the corresponding MA(n) 
for 2 < n < 7 are shown in Fig. 1. 

Table 1. 
k f~ (k) 
2 v~  ,-~1.4142 

3 1 =1.0000 

4 2 ~ ,-,0.7071 
5 2(2-v~) ~0.5359 
6 ! ~0.5000 

,7, 7 ~0.4195 

k=2 ~ o  k=3 k=4 

k=6 k=T 
Fig. 1 

T h e  cases k = 2, 3 and 4 can be solved easily. For k = 5 and 6, we can solve them 
similarly to the  cases of  f(n) for n = 7 and 9 as solved by Schaer and Meir Is] and Schaer Is]. 
From the known result  we have 

fLx(2)=f(2), f ~ ( 3 ) = f ( 4 ) ,  

f ~ ( e ) = f ( 9 ) ,  
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and f~(7)  is just the bound for f(10) given by Schaer [41 and independently by Klaus 
Schluter [el. The exact value of f(10) is still an unsolved problem. 

For k = 7, as we shall show here, the best configuration Mzx(?) is not difficult to guess. 
This figuration is just half of the configuration for the best known bound of f(10). We shall 
show that, for any seven points P~ (1 < i < 7) in a closed unit isoscele right triangle, 

mln d(pi,p4) < fA(7), 
1_<i<j_<7 . . . . . .  

and that the equality holds only for the MA(7) (d~i ,pj )  denotes the distance between Pi 
and pj) .  

Let ~b be a set of seven points Pi (i = 1,2, . . .  , 7) in a closed unit isoscele right triangle 
with 

(4 + Vf2)(V/1 + Vf2 - V~) (1) mln d(pl. v,~ > m = 
l<~<j<j . . . . . .  7 

We shall show that there is just one such set, namely, the one shown in Fig. 1, in which the 
equality in (1) obviously holds. In the proof we shall use the auxiliary points indicated in 
Fig. 2. 

C 

J 

E 

A D 

F 

I 

Fig.  2 

B 

The points A, B, C are the vertices of a unit isoscele right triangle, H is the midpoint 
of the edge BC. The points I, G, F, J on the edges are defined by 

d(B, G) = d(B, I) ---- d(C, F) = d(C, J) = m. 

The points M and L are the midpoints of IG and JF .  The points A , D , K , E  are defined 
to be the vertices of the square with edge length 2~m, and d(A,K)  = m. 

From this construction, we first want to prove that at most one point belonging to ¢ 
can be located in each region (Seven Regions). 

P r o p o s i t i o n  2.1. If (1) holds, then there is at most one point in ~b that can be 
located in the quadrilateral H G M K H  (or H F L K H ) ,  and also the same in the quadrilateral 
D I M K D  (or E J L K E ) .  

Proof. From Fig. 2 and some numerical calculations, we have 

d(K, h) = d(H, G) < m, 

d(M, G) < m, 

d(H, M) < m, 

d(M, K)  < ,,+, 
d(K, G) < -+. 
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From Lemma 1.1 and the symmetric property of Fig. 2, we know that  there is at most one 
point in ¢ that  can be located in the quadrilateral H G M K H  (or HFLKH) .  

By a similar argument, we have that  there is at most one point in ¢ that  can be located 
in quadrilateral D I M K D  (or EJLKE) .  

P r o p o s i t i o n  2.2. If (1) holds, then K ~ ¢. 
Proof. Assume K E ¢. Obviously (see Fig. 2) no points in ¢ can be located in the 

quadrilaterals D K M I D ,  M G H K M ,  K H F L K  and L J E K L .  From Lemma 1.1, there are 
at most two points in ¢ that  can be located in triangle IGBI.  In square ADKEA,  A can 
be in ¢. So we know that  at most six points in a unit isosceles right triangle can be in ¢, 
which is in contradiction with the definition of ¢, since 1¢1 = 7. 

P r o p o s i t i o n  2.3. If (1) holds, then no two points in the square A D K E A  can be in 
¢. 

Proof. From Proposition 2.2, we know that  K ~ ¢. If there are two points in ¢ located 
in the square A D K E A ,  then from Lemma 1.1, we know that  the two points must be D and 
E.  So we have J ,  I ~ ¢, and there are at most four points in ¢ that  can be located in the 
union of the triangles J C F J  and IBGI  and the quadrilateral GMKLFG,  and also there 
are no other points except E and D in the union of square E K D A E  and the quadrilaterals 
J L K E J  and K M I D K .  This yields a contradiction to the de~n]tion of ¢, since I¢1 = 7. 

From Propositions 2.1, 2.2 and 2.3, we know that  at most one point in ¢ can be located 
in each of the regions ADKEA,  D I M K D ,  M G H K M ,  H F L K H ,  L J E K L .  From Lemma 
1.1, there are at most two points in ¢ that can be located in the triangle JFCJ.  If there 
are two points in ¢ tha t  can be located in the triangle JFCJ ,  then they must be C and J 
(or C and F) .  In this case, we can assume that  J is in the quadrilateral L J E K L  (or F in 
H F L K H ) .  Similar argument and assumption can be made for the triangle BGIB.  

From the above discussion, we have the following lemma. 
L e m m a  2.4. There must be exactly one point of ¢ located in the regions ADKEA,  

D K M I D ,  BGIB,  GHKMG,  H F L K H ,  CJFC and J E K L J .  
We shall now indicate a procedure by which the location of the points pi E ¢ may be 

restricted to the subregion of the preceding one. I terat ing this process, the area of the region 
tends to zero, and at last the points in ¢ are confined to some fixed points. To do this, we 
need some preconditioning. See Fig. 3 (a). 

C 

E 1  

E 2  

A D2 Dt D D[ I B 

(~) 

• " H I  

A DI D D~ 11 I 

(b) 
B 

Fig. 3 

Let D1 be a point in segment AD and d(M, D1) = m. From Lemrna 2.4, we know 
that  there is one point in ¢ tha t  can be located in the region KD1AED1 and no points 
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in ¢ can be located inside the triangle D1KDD1. By the same method we have E1 and 
d(L, E1) = m. So we know that  there is one point in ¢ that  must be located in the 
quadrilateral EIKD1AE1. Let D~ be a point in segment D I  and d(D~,E1) = rn. We 
have that  there is one point that  must be located in the region D~KMID~ and no point 
in ¢ can be located in the triangle DKD~D. Let M~ be a point in segment M G  and 
d(D1, M~) = m. We have that  there is one point in ~b that  must be located in the region 
M~KHGM~ and no points in ¢ can be located in the triangle M K M ~ M .  Let H~ be a point 
in segment H F  and d(H~, M~) = m. We have no point in q~ that  can be located in the 
triangle H~KHH~. In the same way, we have H1,M1,D2 and E2, where d(H1,M1) = m, 
d(M1,D2) = m, d(H~,H) = d(H1,H), d(E, E2) = d(D, D2). By the same method, we 
can construct D~, M~, H~, / /2 ,  M2, D3, E3, D ~ , . . . .  From some numerical calculations we 
know that  for n _> 5, M~ be on the segment HG. This means that  no points in ¢ can be 
located in the triangle K G M K .  For the simplicity of proof and without loss of generality, 
we can construct a point sequence on the segment HG instead of the segment MG. See 
Fig. 3 (b). 

With  the method as shown above, let H ~ , / / 1 , / 1 ,  D1, El ,  D~, G1, H~,/-/2 satisfy d(G, 
H~) = d(F, H1) = d(Hl,I1) = d(I1,D1) = m, d(D1,A) = d(E1,A), d(El,D~) = d(D~, G1) 
= d(G1, H~) = rn, d(H~, F) = d(H~., G). And continuing to construct the next point we 
have 12, D2, E2, D~, G2, H~,/-/3, I 3 , . . . .  

Let 

d(H~, B) = x~, 

d(A, D~) = us, 

d(I~, B) = Yl, 

d( B, Gi) = v~. 

d(A, Di) = z~, 

We have 

and for n > 1, 

I ~gl ~ 
Yl = 
Z 1 

"t./, 1 ----~ 

I 3~n ~ 

Yn = 
Zn ~-- 

1 -- Yl -- m ,  

+ ira,_ 

i/m2 1 2 + -- ~Xn, 

1 - Y n  - m ,  

-~-( i  - u . )  + I m 2  - 1 ( i  - u.)2. 

(2) 

Next we shall prove that  the sequences {xn}, {Yn}, {zn}, {un}, {vn} are all convergent. 
From Lemma 3.4 and the definition of sequences {xn}, {Yn}, {z,,}, {un}, .[vn} we have 

Xn > "On, Xn > m, Vn > m, 
Yi > Ui, ui < rn, Yi < l - - m ,  

z~>O. 
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From numerical calculations, the following inequalities hold: 

z2 < Zl, Y2 > Yl, 

Suppose the following inequalities hold for l >_ 2: 

Xl < Xl--l~ 

Yl > Y l - 1 ,  

2:t < g / - - I ,  

IJl > Vl--1. 

From (2) we have 

Z2 < Zl~ 

X l + l  - -  Z l  = - -  ~ l  "~ ~ ! - - 1  = - - ( ~ l  - -  ~ / - - 1 )  <: O,  

v~ 

>'~ "(zl+l - -  =l)-}" 2 / - - 2  i '  9- 
V m - ~z I 

Yl+l - Y l  > 0 

z l + l  - z~ = - ( Y l + l  - Yz) < O. 

Since xn > m, we have 

and 

Similarly, we have 

(3) 

and the following equations hold: / x=v~-m-~, 
v'~ . / 2 

y T~*V m 
z 1 -y-m, 

v Y'~2 (1 - 'u) + 

1 2 

Hm Yn = Y, ~ zn  = z,  ~ ~ = u,  llm vn-----v, 
7t"-~O0 n-..-~ O0 n.=,-~ O0 TI~"~O0 

u t + l  - -  u l  > 0 ,  vt+1 - -  v l  > 0 .  

From the assumption of induction, we know tha t  (3) holds and the sequence {z~} is a de- 
creasing sequence and has a lower bound m. So the sequence {zn} is a convergent sequence. 

Let  
lira z n - - x .  

n-'*OO 

We have tha t  y, z, u, v satisfy the following equalities: 
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To solve the above equations after deleting the extra solutions, we have 

V/2--m 
X ~ m y = 1 m, z = 0r 

2 

V/2--m 
2 

~ - ~  y + u = 1 and z = 0, we know that Fig. 3 (b) can be converted to Since  x = V ~ 2 ' 
F ig .  4, w h e r e  t h e  p o i n t s  E * ,  D* ,  F * ,  G* a re  t h e  l i m i t  p o s i t i o n s  o f  t h e  c o r r e s p o n d i n g  p o i n t  

s equences .  
As shown in Fig.4, it is obvious that A, D*, E*, G*, F* are  a l l  i n  ~b, and the other two 

points in ~ must be located in the shaded areas of the comers B and C. So we have proved 
that MA (7) just corresponds to the case of k = ? in Fig. 1. 

C 

E ° 

F" 

A D* B 

Fig. 4 
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