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Abstract. We study the following linear classification problem in signal processing: Given a set B of
n black point and a set W of m white points in the plane (m = O(n)), compute a minimum number
of lines L such that in the arrangement of L each face contain points with the same color (i.e., either
all black points or all white points). We call this the Minimum Linear Classification (MLC) problem.
We prove that MLC is NP-complete by a reduction from the Minimum Line Fitting (MLF) problem;
moreover, a C-approximation to Minimum Linear Classification implies a C-approximation to the
Minimum Line Fitting problem. Nevertheless, we obtain an O(log n)-factor algorithm for MLC and
we also obtain an O(log Z)-factor algorithm for MLC where Z is the minimum number of disjoint
axis-parallel black/white rectangles covering B and W .
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1. Introduction

Intersymbol interference(ISI) arises in pulse-modulation systems due to limited
bandwidth and is a primary impediment to reliable high-rate digital transmission
or high-density data storage over narrow bandwidth channels. One approach to
data detection for channels which suffer from ISI and additive Gaussian noise is
to use a sequence of observation samples taken over certain number τ of future
symbol intervals-decision delay in making a particular symbol decision. These
types of detectors are called finite-delay sequence detectors. In [7,12] Moon et
al. implements such detectors using signal space partitioning. Their basic idea is
that all possible finite-length signal sequences (the total number is 2τ+1) are first
mapped to a multi-dimensional vector space, then a systematic space partitioning
method is proposed to divide the entire space into two distinct decision regions
using a set of hyperplanes.
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Figure 1. The structure of signal space detector.

The discrete-time channel model is represented in [7] as ok = ∑L
i=0 fiak−i +nk,

where ok is an observation sample, fi represents the overall channel response (f0 �=
0) of a finite length L, ak is the input symbol taken from {+1,−1}, and nk is zero-
mean additive white Gaussian noise. A sequence detector with a decision delay
of τ makes a decision on the input symbol ak−τ at time k based on observation
samples ok(0 � k � τ ). Past decisions on the input symbols ak−i(i > τ ) are used
to cancel ISI terms from observation samples under the assumption that the past
decisions are correct. The observation samples available at the detector input after
the cancellation are represented by xk−j = ∑τ−j

i=0 fiak−j−i + nk−j = sk−j + nk−j ,
where 0 � j � τ , sk−j is the noiseless signal. The detector finds a noiseless signal
vector s = [sk, · · · , sk−τ ]T which maximizes the probability p(x|s) for a given
observation sample vector x = [xk, · · · , xk−τ ]T and chooses the associated ak−τ

as the symbol decision. This decision process can be viewed as partitioning the
(τ + 1)-dimensional observation space into appropriate non-overlapping decision
regions. The corresponding decision boundary is piecewise linear, which can be
represented by a set of hyperplanes.

Figure 1 shows the structure of the signal space detector. A finite number τ + 1
of inputs to the linear discriminant functions are the channel output samples. Each
linear discriminant function represents a hyperplane in a (τ + 1)-dimensional sig-
nal space. Then a threshold detector determines which side of the corresponding
hyperplane the observation vector x is located. At last, a Boolean logic function
estimates the channel input symbol based on the location of the observation vector
relative to each hyperplane. The main complexity of the detector is the number of
hyperplanes. The goal is to minimize the number of hyperplanes for a given per-
formance measure — the minimum distance between any signal and the decision
boundary.
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In [7], the detector design procedure starts with the opposite-class pairing of
all signal subsets. Each pair defines a hyperplane separating them. By search-
ing through these hyperplanes, a signal space detector with the minimal set of
hyperplanes is obtained. It is shown that the proposed procedure also has a delay-
constrained, asymptotically optimal detector if the performance measure βmin is
set at half of the minimum distance dmin between any noiseless signals.

We can formulate the problem of finding minimum set of hyperplanes as: Given
a set B of m black points, a set W of n white points in a space(m = O(n)), a
prescribed distance βmin, find a minimum number of hyperplanes such that every
pair of opposite-color points can be separated with distance at least βmin(i.e., the
distance from the points to the hyperplane is at least βmin).

In this paper we only focus on the two-dimensional (2D) version of this prob-
lem; moreover, we assume that βmin = 0. We call this restricted problem Minimum
Linear Classification (MLC). We prove that even this restricted problem is NP-
hard and we present an O(log n)-factor approximation for this problem. We remark
that a related problem of separating black/white points with minimum length tour
(simple polygon) has been studied in [9] and another related problem of stabbing
a set of objects (vertical segments or squares) with minimum number of lines has
been studied in [4].

The paper is organized as follows. In Section 2, we prove the NP-hardness of
MLC. In Section 3 we present two approximations for MLC. In Section 4, we close
the paper with some open problems for further research in this topic.

2. Hardness Results

In this section, we establish the hardness result for MLC. We reduce the Minimum
Line Fitting problem to it, which is a known NP-hard problem [10]. Given a set
B of n (black) points with rational coordinates in the plane, the Minimum Line
Fitting problem is to compute a set of lines L∗ with the minimum cardinality so
that every point in B is on at least one line in L∗ (or, equivalently, the lines in L∗
fit all the points in B). Our result is as follows.

THEOREM 1. The Minimum Line Fitting problem can be reduced to the Minimum
Linear Classification problem in polynomial time.

Proof. Given a set B of n black points, suppose that we want to find the min-
imum number of lines fitting B. We show below that MLF has a solution of size K

if and only if an instance of MLC has a solution of size 2K.
Let R be the set of all real numbers and let Q be the set of all rational numbers.

Given an instance of MLF, we transfer each point b = (xb, yb) ∈ B, xb, yb ∈ Q

into a small triangle with three white points enclosing b. Let these three white
points be wb

1 = (xb
1 , yb

1 ), wb
2 = (xb

2 , yb
2 ) and wb

3 = (xb
3 , yb

3 ), where all the coordin-
ates of wb

i , i = 1, 2, 3, are in R. For any two points b, d ∈ B we can choose the
coordinates of wb

i and wd
i , i = 1, 2, 3, such that there exist two white lines defined
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by wb
i and wd

j , i, j = 1, 2, 3 whose slopes bound that of line (b, d). Furthermore,
we can choose wb

i , i = 1, 2, 3, for all b, such that no three white points are collinear
and no white point is collinear with any black line (i.e., a line defined by two black
points). As there are only a finite (O(n2)) possible black lines defined by points in
B we can construct all these white points in polynomial (O(n2)) time. We loosely
call this procedure perturbation.

We are now ready to make some claims. First of all, notice that given wb
1, w

b
2, w

b
3

and b we must use at least two lines to separate b from the three white points.
Secondly, given any two such white triangles, each enclosing a black point, we
must use at least two lines to separate the two black points from the six white
points. Thirdly, given any k black points in B, if we could use only one line to fit
these k black points then we can use two lines to separate the k black points from
those corresponding 3k white points.

Consequently, MLF has a solution of size K if and only if the minimum lin-
ear classification problem has a solution of size 2K. This reduction clearly takes
polynomial time. �

From the above theorem, MLF is NP-hard. As it is easy to see that MLC is in
NP, we have the following corollaries.

COROLLARY 1. Minimum Linear Classification is NP-complete.

Notice that for a (minimization) optimization problem �, we say that an approx-
imation algorithm A achieves an approximation factor of ρ if for every instance of
� the solution value returned by A is at most ρ times the corresponding optimal
solution value. We also say that A is a ρ-approximation of �. As both MLC and
MLF are NP-complete, it would be interesting to approximate them. Theorem 1
implies the following corollary regarding efficient approximations for MLC and
MLF.

COROLLARY 2. If there is a C-approximation for Minimum Linear Classifica-
tion then there is a C-approximation for the Minimum Line Fitting problem.

Proof. For the instance we use in the proof of Theorem 1, it is clearly that if the
optimal solution of MLF has size OMLF then the optimal solution for Minimum
Linear Classification must have size at least 2·OMLF . If there is a C-approximation
for Minimum Linear Classification then we can run the approximation algorithm
on the instance we use in the proof of Theorem 1 and obviously that produces a
C-approximation for the Minimum Line Fitting problem. �

The best approximation for MLF has a factor 2 log n + 1 — just formulate it as
a set-cover problem where each line is viewed as a set and the points on it are its
elements. Although the general set-cover problem cannot be approximated with a
factor better than �(log n) [13], we are not able to make the same claim for MLF
and it is not known whether a constant-factor approximation for MLF exists or not.
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Corollary 2 shows that approximating MLC is at least as hard as approximating
MLF. In the next section we present two approximation algorithms for MLC.

3. Approximation Algorithms

In this section, we present two approximation algorithms for MLC. The first ap-
proximation is to formulate it directly as a set-cover problem as follows. Connect-
ing all black points and white points, we have mn segments whose endpoints have
different color. We call these set S.

It is clear that our problem is basically to find the minimum number of lines
stabbing all the segments in S. In fact, we need only to search a set L(S) of O((m+
n)2) candidate lines for MLC: through each segment (p, q), p, q ∈ B ∪ W we
rotate the line (p, q) around the center of the segment (p, q), opq , in clockwise
order until it hits another point r in B ∪ W — during this process all the lines
are topologically equivalent, i.e., separate the same subsets of points in B ∪ W .
We take the line l1 bisecting � popqr and put it into L(S). If we rotate line (p, q)

around opq in counterclockwise order we obtain another line l2 for L(S). So each
pair p, q ∈ B ∪ W contributes two lines for L(S). Now the problem is easy, we
have a set-cover problem which we want to use the minimum number of lines in
L(S) to stab all the segments in S whose endpoints have different colors. Each line
in L(S) is viewed as a subset which consists of the segments in S it stabs.

For set-cover, there is a standard greedy algorithm (in our case, each time we
choose the line in L(S) which stabs the maximum number of segments in S). With
the standard analysis, the greedy algorithm achieves an approximation factor of
log n(n − 1)/2+1 � 2 log n+1 [1, 6, 8]. Interested readers can also refer to some
textbooks for simplified analysis [2]. We thus have the following result.

COROLLARY 3. There exists a (2 log n+ 1)-approximation for Minimum Linear
Classification.

In the following, we present another algorithm with an approximation factor of
2 log Z + 1 where Z is the minimum number of disjoin axis-parallel boxes con-
taining only white (black) points. Our motivation is that even though Z could be
quadratic, in practice it would be relatively small. The algorithm works as follows.

Input: A set B of n black points, a set W of m white points.

Step 1. Draw horizontal lines through midpoints of the x-intervals defined by all
of the points in B ∪ W sorted along x-axis. Let this set of lines be H .

Step 2. Draw vertical lines through midpoints of the y-intervals defined by all of
the points in B ∪ W sorted along y-axis. Let this set of lines be V .

Step 3. Let the arrangement of H ∪ V be A(H ∪ V ). Color each cell of the
arrangement black (white) if it contains a black (white) point.
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Step 4. Compute the maximum connected components of black (white) cells. We
have a set of black rectilinear polygons possibly with white or empty holes
and symmetrically, we have a set of white rectilinear polygon possibly with
black or empty holes.

Step 5. Use Imai and Asano’s algorithm [5] to decompose each of the rectilinear
polygon (with or without holes) into the minimum number of rectangles.
Let the set of all black (white) rectangles be RB (RW ).

Step 6. For each rectangle in RB∪RW , compute convex hull for all the points inside
it. Let Z be the number of convex polygons obtained. Now use the greedy
algorithm to solve the following set-cover problem: the elements in this
set system are the shortest segments connecting two convex polygons with
different colors and the subsets are the (slightly perturbed) inner tangents
of these Z2 black/white polygon pairs.

The algorithm runs in O(n2) time as we must compute the arrangement of O(n)

lines. Although in the worst case, Z = �(n2) (this happens when we have �(n2)

connected components in Step 4), in practical situation it should be much smaller.
Summarizing the analysis, we have

THEOREM 2. The Minimum Linear Classification problem can be approximated
with a factor of 2 log Z + 1, where Z is the minimum number of disjoint axis-
parallel black/white rectangles covering B and W .

4. Remarks

In this note we show that the Minimum Linear Classification problem is NP-
complete. Our reduction shows that if there is an o(log n)-factor approximation
for it then there is also an o(log n)-factor approximation for the Minimum Line
Fitting problem. Therefore, it is interesting to know whether there is an o(log n)-
factor approximation for the Minimum Line Fitting problem and whether the ratio
log n is the lower bound for approximating the Minimum Linear Classification
problem. The more interesting problem is to investigate the original problem in
high dimensions for which nothing is known so far.
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