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Abstract. This paper proposes a generalized on-line risk-reward model,
by introducing the notion of the probabilistic forecast. Using this model,
we investigate the on-line rental problem. We design the risk rental
algorithms under the basic probability forecast and the geometric dis-
tribution probability forecast, respectively. In contrast to the existing
competitive analyses of the on-line rental problem, our results are more
flexible and can help the investor choosing the optimal algorithm accord-
ing to his/her own risk tolerance level and probabilistic forecast. More-
over, we also show that this model has a good linkage to the stochastic
competitive ratio analysis.

1 Introduction

In Karp’s ski-rental problem [1], we wish to acquire equipment for skiing. How-
ever, since we do not know how many times we will use this equipment, we do
not know if it is cheaper to rent or to buy. Let c be the rental price every time,
and p the buying price. For simplicity, assume that c | p and c, p > 0. It is easy
to prove that the algorithm that achieves the optimal competitive ratio, 2− c/p,
is to rent for the first p/c−1 times, and then buy the equipment in the p/c time.

Considering the real-life situation of the rental problem, many researchers ex-
panded Karp’s ski-rental problem. Irani and Ramanathan [2] studied the rental
algorithm under the condition that the buying price is fluctuated but the rental
price remains unchanged. Xu [3] further discussed the rental algorithm under the
circumstance that the buying price and rental price both fluctuate. EI-Yaniv et
al [4] introduced the interest rate factors to the on-line rental problem. Xu [3]
considered the discount factors in the on-line rental study. Some more compli-
cated versions based on the ski-rental problem also have been presented, such as
EI-Yaniv and Karp’s replacement problem [5] and Fleischer’s Bahncard problem
[6].
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Moreover, some researchers also focus on constructing more flexible competi-
tive analysis frameworks to study on-line rental algorithm. al-Binali [7] proposed
the notable on-line risk-reward model. Fujiwara and Iwama [8], and Xu et al [9]
integrated probability distribution into the classical competitive analysis [10] to
study the rental problem. The main purpose of this paper is to propose a gener-
alized on-line risk-reward model under the probability forecast. We also show a
good linkage of our model to the existing competitive analysis frameworks. The
rest of this paper is organized as follows. In Section 2, we proposes a generalized
on-line risk-reward model, by introducing the notion of the probabilistic fore-
cast. In Section 3, we design the risk rental algorithm under the basic probability
forecast. In Section 4, we study the risk rental algorithm under the geometric
distribution probability forecast. Concluding remarks and future research are
included in Section 5.

2 On-Line Risk-Reward Model Under Probabilistic
Forecast

In 1985, Sleator and Tarjian [10] proposed the concept of the competitive ratio
to study on-line problems, by comparing the performance of on-line algorithms
to a benchmark (optimal off-line) algorithm. During this classical competitive
analysis, there are an algorithm set S for the on-line decision-maker and a uncer-
tain information set I dominated by the off-line opponent. The on-line decision-
maker’s goal is to design a good algorithm A ∈ S to deal with the uncertainty
input sequence σ ∈ I of the off-line rival. For a known sequence σ, let Copt(σ)
be the total cost of the optimal off-line algorithm to complete σ. For an on-line
algorithm A, if there are constants λA and ζ satisfying

CA(σ) ≤ λACopt(σ) + ζ

for any σ ∈ I, then A is called a λA-competitive algorithm and λA is called the
competitive ratio of A, where CA(σ) is the total cost taken with algorithm A to
complete σ. That is to say, λA = sup

σ∈I

CA(σ)
Copt(σ) . We denote λ∗ = inf

A∈S
(λA) as the

optimal competitive ratio for the on-line problem. If λA∗ = λ∗, then A∗ is called
the optimal on-line algorithm.

The above competitive analysis is the most fundamental and significant ap-
proach, yet it is not very flexible, especially in the economic management issues,
many investors want to manage their risk. Al-Binali [9] first defined the concepts
of risk and reward for on-line financial problems. Al-Binali defined the risk of
an algorithm A to be rA = λA

λ∗ . The greater the value of rA, the higher the risk
of A. Let F ⊂ I be a forecast, then denote λA = sup

σ∈F

CA(σ)
Copt(σ) as the restricted

competitive ratio of A restricted to cases when the forecast is correct. The op-
timal restricted competitive ratio under the forecast F is λ∗ = inf

A∈S
(λA). When

the forecast is correct, Al-Binali defined the reward of the algorithm A to be
fA = λ∗

λA
.
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The above reward definition is based on the certain forecast that is described
to be a subset of I. When the forecast selected is correct, it will bring reward;
otherwise bring risk. This paper extends the certain forecast to the probabil-
ity forecast. Let F1, F2, ..., Fm be a group of subsets of I, where

⋃
Fi = I and

Fi

⋂
Fj = φ for i �= j. Denote Pi as the probability that the on-line deci-

sion maker anticipates that σ ∈ Fi, where
∑m

i=1 Pi = 1. We call {(Fi, Pi)|i =
1, 2, ..., m} a probability forecast. Let λA,i = sup

σ∈Fi

CA(σ)
Copt(σ) be the restricted com-

petitive ratio under the forecast Fi. Let RA,i = λ∗

λA,i
be the reward after the

success of the forecast Fi. Based on this, we define λ̃A =
∑m

i=1 PiλA,i as the re-
stricted competitive ratio under the probability forecast {(Fi, Pi)|i = 1, 2, ..., m},
and define R̃A = λ∗

�λA
as the reward under the probability forecast.

The reward definition based on the probability forecast has some desired prop-
erties.

Theorem 1. For any A ∈ S, min
i

{RA,i} ≤ R̃A ≤ max
i

{RA,i}.

Proof. Since λ̃A =
∑m

i=1 PiλA,i, min
i

{λA,i} ≤ λ̃A ≤ max
i

{λA,i}. Consequently,

min
i

{λ∗/λA,i} ≤ λ∗/λ̃A ≤ max
i

{λ∗/λA,i}, that is min
i

{RA,i} ≤ R̃A ≤ max
i

{RA,i}.

Let {(Fi, Pi)|i = 1, 2, ..., m} be a probability forecast. We divide Fi into Fi,1 and
Fi,2, where Fi,1 ∪ Fi,2 = Fi and Fi,1

⋂
Fi,2 = φ. We also divide Pi into Pi,1 and

Pi,2, where Pi,1 +Pi,2 = Pi. In this way, we can construct a more detailed proba-
bility forecast based on {(Fi, Pi)|i = 1, 2, ..., m}, that is
{(F1, P1), (F2, P2), ..., (Fi−1, Pi−1), (Fi,1, Pi,1), (Fi,2, Pi,2), (Fi+1, Pi+1)..., (Fm, Pm)}.

Denote ˜̃
RA = λ∗

�

�λA

as the reward under the newly constructed probability forecast.

Theorem 2. For any A ∈ S, R̃A ≤ ˜̃
RA.

Proof. From the definition of the restricted competitive ratio, we know that
λA,i1 ≤ λA,i and λA,i2 ≤ λA,i. Besides Pi,1 + Pi,2 = Pi, thus λ∗

�RA
− λ∗

�

�RA

=

PiλA,i − Pi,1λA,i1 − Pi,2λA,i2 ≥ 0, that is R̃A ≤ ˜̃
RA.

Theorem 2 shows that if a probability forecast can be described more de-
tailedly, the reward under the probability forecast will be greater.

Based on these newly introduced concepts, we propose a generalized risk-
reward model under the probability forecast. If r is the risk tolerance level of
the on-line decision maker (where r ≥ 1 and higher values of r denote a higher
risk tolerance), then denote Sr = {A|λA ≤ rλ∗} by the set of all algorithms
with the risk tolerance level r. Our main aim is to look for an optimal risk
algorithm A∗ ∈ Sr that maximizes the reward under the probability forecast
{(Fi, Pi)|i = 1, 2, ..., m}, that is R̃A∗ = sup

A∈Sr

λ∗

�λA
. The mathematic model can be

described as follows: {
max

A
R̃A = λ∗

�λA

s.t λA ≤ rλ∗ . (1)
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The steps to use this model can be described as follows.
Step 1: Divide I into F1, F2, ..., Fm, where

⋃
Fi = I and Fi

⋂
Fj = φ for i �= j;

Step 2: Denote Pi as the probability that the on-line decision maker anticipates
that σ ∈ Fi, where

∑m
i=1 Pi = 1;

Step 3: According to definitions, compute the risk and reward under the prob-
ability forecast {(Fi, Pi)|i = 1, 2, ..., m};
Step 4: Set the risk tolerance level to be r;
Step 5: Solve the model (1) to obtain the optimal risk algorithm A∗.

In the following two sections, we will demonstrate the model that we have
just introduced using Karp’s ski-rental problem.

3 Risk Rental Algorithm Under Basic Probability
Forecast

We consider the following deterministic on-line rental algorithm T : rent up to
T − 1 times and buy in T . Let CostT (t) and Costopt(t) denote the cost of the
on-line algorithm T and the cost of the optimal off-line algorithm, respectively,
where t is the total number of the actual leases.

For the off-line rental problem, if t ≥ p/c, then buy; otherwise rent. So we
have that

Costopt{t} =
{

ct 0 ≤ t < p/c
p p/c ≤ t

. (2)

For the on-line problem, if t < T , then always lease. According to on-line
algorithm T (T = 0, 1, 2, ...), then it is not difficult to see that

CostT {t} =
{

ct 0 ≤ t ≤ T
cT + p T < t

. (3)

According to the off-line optimal rental algorithm, we construct a basic prob-
ability forecast, {(F1, P1), (F2, P2)}, as follows.

Forecast F1: F1 = {t : t < p/c}. The probability when F1 appears is P1.
Forecast F2: F2 = {t : t ≥ p/c}. The probability when F2 appears is P2.

Theorem 3. When setting the risk tolerance level r ≥ 2p
2p−c , the optimal risk

rental algorithm under the probability forecast {(F1, P1), (F2, P2)} is

T ∗ =

⎧
⎪⎨

⎪⎩

p/c, P1 > 1/2
p
c

√
P1

1−P1
, p2/((2pr − cr − p)2 + p2) ≤ P1 ≤ 1/2

p2/(2prc − c2r − pc), P1 ≤ p2/((2pr − cr − p)2 + p2)
; (4)

otherwise, when 1 ≤ r ≤ 2p
2p−c ,

T ∗ =
{

p/c, P1 > 1/2
p2/(2prc − c2r − pc), P1 ≤ 1/2 . (5)
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Proof. According to the definition of the competitive ratio, we know that λT =
cT+p

min{cT,p} . Since the risk tolerance level set is r, we have that λT ≤ r(2 − c/p).

When cT ≤ p, we have that λT = cT+p
cT ≤ r(2 − c/p), that is T ≥ p2

2prc−c2r−pc .
When cT > p, we have that λT = cT+p

p ≤ r(2 − c/p), that is T ≤ 2pr−cr−p
c .

Consequently,
p2

2prc − c2r − pc
≤ T ≤ 2pr − cr − p

c
(6)

Denote Sr = [ p2

2prc−c2r−pc ,
2pr−cr−p

c ] as the algorithm set with risk level r.
From the definition of the restricted competitive ratio under the probability fore-
cast, we have that λ̃T =

∑2
i=1 PiλT,i, where λT,i = sup

σ∈Fi

CT (σ)
Copt(σ) . Consequently,

λ̃T =

{
P1

cT+p
cT + cT+p

p (1 − P1), T < p/c

P1 + cT+p
p (1 − P1), T ≥ p/c

. (7)

Solving ∂�λT

∂T , we find that:

(1) when P1 > 1/2, λ̃T is monotony decreasing at T < p/c, and monotony
increasing at T ≥ p/c;

(2) when P1 ≤ 1/2, λ̃T is monotony decreasing at T < p
c

√
P1

1−P1
, and monotony

increasing at T ≥ p
c

√
P1

1−P1
.

From the above monotony properties of λ̃T and equations (6), we can look for
the optimal risk rental algorithm T ∗ that makes λ̃T minimum, that is equations
(4) and (5).

Corollary 1. When P1 = 1, T ∗ = p/c; when P1 = 0, T ∗ = p2/(2prc− c2r − pc).
Corollary 1 shows that our model is a generalized risk-reward framework, com-
pared with one presented in Al-Binali [7].

4 Risk Rental Algorithm Under Geometric Distribution
Forecast

By dividing Fi into Fi,1 and Fi,2 (where Fi,1 ∪ Fi,2 = Fi and Fi,1
⋂

Fi,2 = φ),
and dividing Pi into Pi,1 and Pi,2 (where Pi,1 + Pi,2 = Pi), we construct a
more detailed probability forecast based on {(Fi, Pi)|i = 1, 2, ..., m}, that is
{(F1, P1), (F2, P2), ..., (Fi−1, Pi−1), (Fi,1, Pi,1), (Fi,2, Pi,2), (Fi+1, Pi+1)..., (Fm, Pm)}.

For the rental problem, we can obtain the probability distribution of t, when re-
peatedly dividing {(F1, P1), (F2, P2)} in the above way. Fujiwara and Iwama [8],
and Xu et al [9] integrated probability distribution into the classical compet-
itive analysis, and introduced the concept of the stochastic competitive ratio
(Definition 1) for the on-line rental problem.
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Definition 1. Let the number of leases be a stochastic variable X subject to
some type of probability distribution function P (X = t). The discrete stochastic
competitive ratio is then defined as

˜̃
λT = EX

CostT (X)
Costopt(X)

=
∞∑

t=0

CostT (t)
Costopt(t)

P (X = t), (8)

where P (X = t) is a probability function that is used by the on-line decision
maker to approximate the input structures.

Note. It is easy to find that the definition of the discrete stochastic compet-
itive ratio is consistency of one of the restricted competitive ratio under the
corresponding probability distribution forecast.

For the rental problem, Xu ea tal [9] consider the geometric distribution func-
tion P (X = t) = θt−1(1 − θ), (t = 0, 1, 2, 3, · · · ), where θ is the hazard rate of
continuous leasing in every period, and 1 − θ is the hazard rate of immediately
purchasing in every period. In this paper, we only discuss the situation that

1
1−θ < p/c to illustrate our model.

Let s = p/c. According to equations (2), (3), and (8), we have, for T=0, 1, 2,
3, · · · , s, that

˜̃
λT = (1 − θT ) + (T + s)(1 − θ)

s∑

t=T+1

θt−1

t
+

T + s

s
θs, (9)

and for k = s + 1, s + 2, s + 3, · · · ,
˜̃
λT = (1 − θs) +

(1 − θ)
s

ΣT
t=s+1tθ

t−1 +
T + s

s
θT . (10)

Then we obtain the following result (Theorem 4).

Theorem 4. When setting the risk tolerance level to be r, the optimal risk
algorithm under the geometric distribution forecast is T ∗∗ = 2pr−cr−p

c (we only
discuss the situation that 1

1−θ < s).

Proof. For t < s − 1, we have that

˜̃
λT+1 − ˜̃

λT = −s(1 − θ)
T + 1

θT +
1
s
θs + (1 − θ)Σs

t=T+1
θt−1

t

≤ −s(1 − θ)
T + 1

θT +
1
s
θs +

1 − θ

T + 1
θT − θs

1 − θ

= θT (
1

T + 1
− s(1 − θ)

T + 1
) + θs(

1
s

− 1
T + 1

) < 0

For t ≥ s − 1, we also have that

˜̃
λT+1 − ˜̃

λT = (
1
s

− 1 + θ)θT < 0

Therefore, we have that λT+1 − λT < 0 for any T . Besides, because ˜̃
RT = λ∗

�

�λT

and T ∈ Sr, we have that T ∗∗ = 2pr−cr−p
c .
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5 Conclusions

The classical competitive ratio analysis is the most fundamental and important
framework to study online problems. But it is not very flexible, particularly in
the financial and investment issues (such as on-line rental problem, on-line cur-
rency conversion, on-line auctions problem). Many investors hope to manage the
risk. Sometimes for more reward, they are willing to take certain risk. Therefore,
the notable online risk-reward idea has been proposed by Al-Binali. However,
the existing concept of risk-reward is mainly based on the certainty forecast.
In this paper, we further puts forward the online risk- reward model under the
probability forecast. The probability forecast will not make the simple judgment
about whether the forecast is correct or not, but estimate the probability that the
forecast is correct. The newly introduced model makes the risk-reward idea more
flexible. Moreover, some researchers presented the concept of the stochastic com-
petitive ratio to improve the performance measure of competitive analysis, by
integrating probability distribution into the classical competitive ratio analysis.
This paper shows that our model has a good linkage to the stochastic compet-
itive ratio analysis. We also argue that our model is the generalized stochastic
competitive ratio analysis. By using Karp’s ski-rental problem, we demonstrate
the on-line risk-reward model under the probability forecast. In general, it is hard
for an on-line decision maker to accurately estimate the probability forecast of
the future inputs. Therefore, in our future research, we will explore the on-line
risk-reward model in linguistic environments, by introducing the notations and
operational laws of the linguistic variables.
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