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Abstract. Facility Location Problems have always been studied with
the assumption that the environment in the network is static and does
not change over time. In practice, however, the environment is usually
dynamic and we must consider the facility location in a global view.
In this paper, we impose the following additional constraints on input
facilities: the total number of facilities to be placed is not known in
advance and a facility cannot be removed once it is placed. We solve this
problem by presenting an algorithm to find a facility permutation such
that any prefix of the permutation of facilities is near-optimal over any
other facility subset.

1 Introduction

Variants of the facility location problem (FLP) have been studied extensively
in operation research and management science literatures [14, 3, 1]. The model
in typical theoretical work has addressed situations in which we want to locate
facility in a network and optimize an objective function in the static environment.
In practice, however, the environment is dynamic in many cases. For example, in
a commercial network, we do not know the exact number of facility in advance,
our business plan is to start with one facility, and then to gradually add a new
facility but never to remove a previously established facility. The same is true
for locating the public facility in community network, such as schools, hospitals,
etc.

Under the above considerations, the facilities must be constructed in the
global view. That is, we locate facilities in a way that their cost is optimal or
near-optimal over any other non-empty facility subset and, when the number of
needed facilities increases, no former facility can be removed. It is worth noting
that a typical facility location problem with these two constraints can be viewed
as the facility permutation problem whose goal is to specify the facility order that
minimizes the maximum ratio between the cost of any prefix of the permutation
and that of an any non-empty subset of all facilities.

Of the facility location models, our problem most closely resembles Undesirable
FacilityLocationProblem[13], theOnlineMedianProblem[11]andtheIncremental
Facility Location Problem [12]. All of these problems, as well as our problem, used
exactly the same assumption that the number of facilities is not known in advance
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and once the facility is placed, it can’t be removed, but their objective formulations
are different with ours. See the section 2 for some more discussions.

In this paper, we solve the facility location problem with above considerations
by defining a model of locating facilities to optimize the location cost over any
other cost of non-empty subset of all facilities, which we call strength facility
location problem (SFLP). Although NP-hardness of SFLP has not been proven
yet, finding an optimal solution for the problem seems to be difficult, in view of
the NP-completeness of the relaxation version: classical Uncapacitated Facility
Location Problem. This paper is concerned with approximation algorithm for
this problem. Given a minimization problem, an algorithm is said to be a (poly-
nomial) r − approximation algorithm, if for any instance of the problem, the
algorithm runs in polynomial time and produces a solution that has a cost at
most r ≥ 1 times the minimal cost, where r is called the approximation ratio of
the algorithm.

Though not stated specifically, Mettu and Plaxton [11] first presented a 3-
approximation algorithm for SFLP. But their solution does not generate the
permutation of facilities. Based on their algorithm, this paper presents a group
of simple and deterministic approximation algorithms for constructing some so-
lutions of SFLP which is similar to, in simplicity and efficiency, the standard
heuristics for facility location. Each approximation algorithm and the result are
only linked to a single parameter, and for the different parameter, the solutions
obtained by each algorithm are nested, namely, one of solution is the subset
of another one, thus we obtain a permutation of all facilities by varying the
parameter.

The rest of this paper is organized as follows. Section 2 specifies the problem
and describes related works. Section 3 presents the approximation algorithm and
proves the approximation ratio. The final section, section 4, concludes the paper
and describes future research.

2 Problem Description and Related Work

This section describes the formulation of SFLP and gives an overview of related
work. We first discuss the basic facility location model, the metric uncapacitated
facility location problem (UFLP), in which we are given a graph with nonnega-
tive edge costs. As motivation [7], the nodes can be thought of as customers, the
facilities as service centers, and the distance between a customer and a service
center as the cost of serving the customer by that center. Furthermore, each
customer (node) has a weight, corresponding to the amount of requests. So, the
cost of serving a customer becomes the weight of the customer node times its
distances from the closest service center. In addition, each node is assigned a
constructive cost to represent the cost of building a service center at that node.
The total cost we wish to minimize is total constructive cost of chosen facilities
plus the cost of serving all of the customer requests by the chosen facilities. The
objective of the UFLP is to choose k nodes (as the facilities) so as to minimize
the cost, where k is a given facility number. Compared with this, the goal of
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SFLP is to minimize the cost over the cost of any number of facilities. More
precisely, the problem formulation of SFLP is as follows:

Problem Formulation: Fixed a set of points U , a distance function d : U ×
U −→ R+, a nonnegative weight function w : U −→ R and nonnegative con-
strutive function f : U −→ R. We assume that the distance that d is a met-
ric, that is, d is nonnegative, symmetric, satisfies the triangle inequality, and
d(x, y) = 0 iff x = y. We define the distance of a point x to a point set S is
d(x, S) = min

y∈S
d(x, y) and |S| is the number of points in S. Let n = |U | de-

note the number of total customers, and for any subset S ⊆ U , let its cost be
cost(S) =

∑
x∈S f(x)+

∑
y∈U d(y, S)w(y). In contrast to UFLP whose objective

is to find a subset S ⊆ U such that it meet min
|S|=k

cost(S), where k is the given

positive integer, 1 ≤ k ≤ n, the objective of SFLP is to give a subset S ⊆ U
such that it meet that min

1≤k≤n
min
|S|=k

cost(S).

Related Work: Facility location has been the subject of a great deal of pre-
vious work[5, 15, 9, 8, 2, 6], and here we just describe some typical theoretical
analysis. This problem is MAX-SNP Hard and the first constant approxima-
tion algorithm was given by Shmoys et.al [15]; the approximation ratio was later
improved to 1.728 by Charikar and Gula[5] and to 1.528 by Sviridenko [16]. Now
the best approximation ratio is 1.52 given by Mahdian, Ye and Zhang [10], and
the negative result is that no polynomial-time algorithm can achieve an approx-
imation ratio less than 1.463 unless NP⊆DTIME[nO(log log n)] [8]. The methods
they have used are based on, such as linear Programming rounding (e.g. [15]),
local search (e.g. [5]), and the primal-dual method (e.g. [9]) etc. The reader is
referred to Mahdian et.al [10] for a detail discussion.

Current et.al [4] firstly considered the facility location problem when the
number of facilities is uncertain. Unlike ours, they used the criteria of the mini-
mization of expected opportunity loss and the minimization of maximum regret
to make decision about what’s the number of facilities and where we locate those.
Their solution, unfortunately, does not also generate a permutation of facilities
and thus does not meet the demand that no point can be removed when the
number of facilities increases.

Recently, the Undesirable Facility Location Problem [13], the Online Median
Problem [11] and the Incremental Facility Location Problem [12] most resemble
our problem, but their objective formulations are different with ours. The Undesir-
able Facility Location Problem seeks a solution to maximize the minimum distance
between facilities and the minimum distance between facilities and existing non-
obnoxious facilities [13]. In the Online Median Problem, the goal is to determinate
a permutation of facilities that minimizes the maximum ratio between the service
cost of anyprefixof thepermutationand that of anoptimaloffline same-size config-
urations [11], and this problem uses the formulation cost(S) =

∑
y∈U d(y, S)w(y)

to compute the cost. And for the Incremental Facility Location Problem [12], the
cost formulation is cost(S) = |S|∑x∈S f(x) +

∑
y∈U d(y, S)w(y) and the goal is

also minimal over the same-size configurations.
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3 Algorithm and Approximation Ratio

3.1 Greedy Selection of Mettu and Plaxton [11]

For the new requirement of our problem, we first present the algorithm of Mettu
and Plaxton [11], and will need to build upon it. Roundly speaking, their al-
gorithm is to compute the ”value” of each ball about every node in the metric
space to start with, then sort them by increasing order, then greedily pick up the
point if they separate sufficient large, and so on until all n points are examined.
These points are taken as service facilities. If the distance function is a metric
and the separation distance is more twice longer than the maximal radius of
ball, the cost of resulting location is within a factor three of optimal. Implicitly,
their idea came from the work of Jain and Vazirani [9].

The following definition were used in [11], but we rewrite them by our nota-
tion for easy use later.

Definition 1. A ball A is a pair (x, rx), where x ∈ U is the center and rx is
the radius of the ball, which is a nonnegative real.

Definition 2. Given a ball A = (x, rx), we let Points(Ax) denote the set
{y ∈ U |d(x, y) ≤ rx} and always directly use Ax instead of Point(Ax). For
example, we write ”a ∈ Ax” and ”Ax ∪ Ay” instead of ”a ∈ Points(Ax)” and
”Points(Ax) ∪ Points(Ay)”, respectively.

Definition 3. The value of a ball A = (x, rx), denoted value(Ax), is defined
by

value(Ax) =
∑

y∈Ax

(rx − d(x, y)) · w(y)

Definition 4. For any ball A = (x, rx) and any nonnegative real c, we define
cA as the ball (x, crx).

3.2 Constructing a Permutation

We will stick with the same computing of ”value” of each point in the metric
space, but we will no longer greedily select the facility by the former separate dis-
tance. Note that the longer the separate distance between two facilities is, the less
the number of obtained facilities is. Intuitively, we may only need the distance
to separate longer than twice and thus it will enable us to generate less facili-
ties. Thus if the obtained facilities are nested each other and the near-optimal
property is still held for fixed constant distance, the permutation of facilities,
which will meet the constraints of our problem, will be obtained. Following we
will give a positive answer for these considerations.

For easy reference, and to illustrate our notation, we write integrally the
algorithm. In the following algorithm and the later analysis, we always assume
that the weight of each point is larger than zero for the sake of convenience.
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Input: (U, d), f and w;

Output: A non-empty subset Zn ⊆ U .

Algorithm:
Step 1. For each point x, determine an associated ball A = (x, rx) such that

value(Ax) = f(x).
Step 2. Sorting rx for all x ∈ U increasingly, denoting the index of x after

sorting is φ(x).
Step 3. Let Bi = (xi, rxi

) denote the ball A = (x, rx) such that φ(x) = i,
0 ≤ i < n. Let Z0 = ∅.

Step 4. For i = 0 to n − 1: If Zi ∩ (1 + α)Bi = ∅ then let Zi+1 = Zi ∪ {xi};
otherwise, let Zi+1 = Zi.

Where α ≥ 1 is a parameter which need to be inputed.

Throughout the rest of the paper, we always let Z denote the result of our
algorithm.

Remark 1. We have x0 ∈ Z, so Z 	= ∅.

Remark 2. Note that if φ(x) = i, we have value(Bi) = value(Axi
) = f(xi).

Remark 3. Following the same manner as analysis given in [11], it can be easily
obtained that the total time complexity of above algorithm is O(n2) time for
any fix constant α ≥ 1.

3.3 Performance Guarantee

We now show a strong guarantee for the facility location induced by our algo-
rithm with any fixed input α ≥ 1.

Lemma 1. For any point x ∈ U , there exists a point y ∈ Z such that φ(y) ≤
φ(x) and d(x, y) ≤ (1 + α)rx.

Proof. If x ∈ Z, we can choose y = x and this lemma is proven. Following we
assume x /∈ Z.

The proof is by contradiction. Assume that ∀y ∈ Z with φ(y) ≤ φ(x), we
have d(x, y) > (1 + α)rx, that is, Zφ(x) ∩ (1 + α)Bφ(x) = ∅. Thus we have x
belongs to Z according to step 4 and this is contradicted with x /∈ Z. ��

Lemma 2. Let x, y ∈ Z and x 	= y, then d(x, y) > (1 + α)max{rx, ry}.

Proof. Without loss of generality we assume φ(y) < φ(x), thus we have ry ≤ rx

and Zφ(y)+1 ⊆ Zφ(x) and so y ∈ Zφ(x). On the other hand, due to x ∈ Z we
must get Zφ(x) ∩ (1 + α)Bφ(x) = ∅. Thus we obtain d(x, y) > (1 + α)rx =
(1 + α)max{rx, ry}. ��
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For any point x and any non-empty subset Y ⊆ U , let

charge(x, Y ) = d(x, Y ) +
∑

y∈Y
max{0, ry − d(x, y)}

Lemma 3 ([11]). For any non-empty subset Y ⊆ U , we have

cost(Y ) =
∑

x∈U
charge(x, Y ) · w(x)

Lemma 4. Let x ∈ U be a point, let Y be a non-empty subset of U , and let y
belong to Y . If d(x, y) = d(x, Y ) then charge(x, Y ) ≥ max{ry, d(x, y)}

Proof. If x /∈ Ay, then d(x, y) > ry, we have charge(x, Y ) ≥ d(x, y) > ry.
Otherwise, we have d(x, y) ≤ ry, then we have charge(x, Y ) ≥ d(x, y) + (ry −
d(x, y)) = ry ≥ d(x, y). The lemma is proven. ��

Lemma 5. Let x ∈ U and z ∈ Z. If x ∈ Az, then charge(x,Z) ≤ rz.

Proof. Firstly assuming x ∈ Z, by z ∈ Z and Lemma 2, we have d(x, z) ≥
(1 + α)rz, which is contradicted with x ∈ Az, so x /∈ Z.

Now we prove ∀y ∈ Z, y 	= z, d(y, x) > ry. Assuming this is not true, that is,
∃y∗ such that y∗ 	= z and d(y∗, x) ≤ ry∗ , so

(1 + α)max{ry∗ , rz} ≤ d(y∗, z) ≤ d(y∗, x) + d(x, z) ≤ ry∗ + rz

this is contradicted by α ≥ 1.
According to discussion above, we have that

charge(x,Z) = d(x,Z) + (rz − d(z, x)) +
∑

y∈Z,y �=z

max{0, ry − d(y, x)}
= d(x,Z) + (rz − d(x, z)) ≤ d(x, z) + (rz − d(x, z)) ≤ rz

where d(x, z) ≤ rz by x belongs to Az and the third inequality by z ∈ Z. ��

Lemma 6. Let x ∈ U and z ∈ Z. If x /∈ Az, then charge(x,Z) ≤ d(x, z).

Proof. If ∃y ∈ Z such that x ∈ Ay, that is, d(x, y) ≤ ry. By Lemma 2 and
Lemma 5, we have d(y, z) ≥ (1 + α)max{ry, rz} and charge(x,Z) ≤ ry, re-
spectively. Then we have d(x, z) ≥ d(y, z) − d(x, y) > (1 + α)ry − ry = αry ≥
α · charge(x,Z) ≥ charge(x,Z), that is, charge(x,Z) ≤ d(x, z).

Otherwise, if ∀y ∈ Z, we have x /∈ Ay, by the definition of charge(x,Z) and
z ∈ Z we have charge(x,Z) = d(x,Z) ≤ d(x, z). ��

Lemma 7. For any point x ∈ U and non-empty subset Y , charge(x,Z) ≤
(2 + α)charge(x, Y ).
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Proof. Let y be some point in Y such that d(x, y) = d(x, Y ). By Lemma 1, there
exists a point z ∈ Z such that φ(z) ≤ φ(y) and d(y, z) ≤ (1 + α)ry.

Now if x ∈ Az, then charge(x,Z) ≤ rz by Lemma 5. Thus by φ(z) ≤ φ(y),
we have rz ≤ ry, and since Lemma 4 implies charge(x, Y ) ≥ ry, we obtain
charge(x,Z) ≤ charge(x, Y ).

However if x /∈ Az, then charge(x,Z) ≤ d(x, z) by Lemma 6. By triangular
inequality we have charge(x,Z) ≤ d(x, y) + d(y, z) ≤ [d(x, y) + (1 + α)ry].
Moreover, by Lemma 4, we have charge(x, Y ) ≥ max{ry, d(x, y)}. Then we
have

charge(x,Z)
charge(x, Y )

≤ d(x, y) + (1 + α)ry

max{ry, d(x, y)} ≤ 2 + α

and the lemma is proven. ��
With above lemma 3 and lemma 7, we can then clinch the following main

result.

Theorem 1. For any non-empty subset Y of U , we have

cost(Z) ≤ (2 + α)cost(Y )

that is, the approximation ratio of our algorithm is (2 + α).

The best approximation ratio of our algorithm, which is 3 for α = 1, is equal
to the approximation ratio of Mettu and Plaxton. Though our best ratio is not
less than theirs, our algorithm can present a permutation of facilities with the
property that no facility can be removed as the number of facilities increases by
varying the parameter α, and it can be easily used in practice since practical
manager can choose the proper number of facilities by the proper α. Moreover,
the result of our algorithm presents an online fashion for the different α and the
different number of facilities. This property can give the practical manager much
room to freely add a new facility or to delete a facility from the exist facilities.

4 Summary and Future Work

For more practical considerations, this paper presents two primary constraints
on input facilities: the total number of facilities to be placed is not known in
advance and a facility cannot be removed once it is placed. We gave a new vari-
ant of classic facility location problem, the strength facility location problem,
and presented a group of constant-factor approximation algorithms. These algo-
rithms, which all take quadratic time in the worst case, produce the solutions
such that each result is the subset of another one. Thus the permutation of facil-
ities obtained by all of the results present the property that no point is removed
when the number of facility increases.

There are still various open problems for the future research. For example, it is
interesting to design and analyze some algorithms to improve the approximation
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ratio. Actually, according to the proof of Theorem 1, the condition α ≥ 1 is the
main bottleneck for improving the approximation ratio. So how to relax this
condition may be one of the possible directions.
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