
New Results on the k-Truck Problem�

Weimin Ma1,2, Yinfeng Xu1, Jane You2, James Liu2, and Kanliang Wang1

1 School of Management, Xi’an Jiaotong University, Shaanxi 710049, PRC
2 Dept. of Computing, Hong Kong Polytechnic Uinversity, Hung Hom,

Kowloon, Hong Kong
cswmma@comp.polyu.edu.hk

Abstract. In this paper, some results concerning the k-truck problem
are produced. First, the algorithms and their complexity concerning the
off-line k-truck problem are discussed. Following that, a lower bound of
competitive ratio for the on-line k-truck problem is given. Based on the
Position Maintaining Strategy (PMS), we get some new results which
are slightly better than those of [1] for general cases. We also use the
Partial-Greedy Algorithm (PG) to solve this problem on a special line.
Finally, we extend the concepts of the on-line k-truck problem to obtain
a new variant: Deeper On-line k-Truck Problem (DTP).

1 Introduction

On-line problem and their competitive analysis have received considerable in-
terest for about twenty years. S. Albers and S. Leonardi [2] coined out a com-
prehensive survey of this domain. On-line problems had been systematically
investigated only when Sleator and Tarjian [3] suggested comparing an on-line
algorithm to an optimal off-line algorithm and Karlin, Manasse, Rudolph and
Sleator [4] coined the term competitive analysis. The task system, the k-server
problem, and on-line/off-line games ([5], [6] and [7]) all attempt to model on-line
problems and algorithms. In this paper, we first discussed the algorithms and
its complexity concerning the off-line k-truck problem. Following that, a lower
bound of competitive ratio for the on-line k-truck problem is given. Especially,
based on the PMS, we get some new results for the general cases. In addition,
we also use the PG to solve this problem on a special line and prove that PG
is a (1 + (n − k)/θ) -competitive algorithm for this case. Finally, we extend the
concepts of the on-line k-truck problem to obtain a new variant: DTP.

2 Preliminaries

The k-truck problem can be stated as follows. We are given a metric space M,
and k trucks which move among the points of M, each occupying one point of M.
� The authors would like to acknowledge the support of Central Research Grant GV-

975 of the Hong Kong Polytechnic University and Research Grant from NSF of
China. No.19731001

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 504–513, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

New Results on the k-Truck Problem 505

Repeatedly, a request (a pair of points x, y ∈ M) appears. To serve a request,
an empty truck must first move to x and then move to y with goods from x.
How to minimize the total cost of all trucks? Obviously, the k-truck problem
aims at minimizing the cost of all trucks. Because the cost of trucks with goods
is different from that of trucks without goods on the same distance, the total
distance cannot be considered as the objective to be optimized. For simplicity,
we assume that the cost of a truck with goods is θ times that of one without
goods on the same distance. We can then take (1+ θ) times of the empty loaded
distant as the objective of optimization.
The Model. Let G = (V, E) denote an edge weighted graph with n vertices and
the weights of edges satisfying the triangle inequality, where V is a metric space
consisting of n vertices, and E is the set of all weighted edges. We assume that
the weight of edge (x, y) is denoted by d(x, y) and the weights are symmetric,
i.e., for all x, y, d(x, y) = d(y, x). We assume that k trucks occupy a k-vertexes
which is a subset of V. A service request r = (a, b), a, b ∈ V implies that there
are some goods on vertex a that must be moved to vertex b (for simplicity, we
assume that the weight of the goods is same all the time). A service request
sequence R consists of some service request in turn, namely R = (r1, ..., rm),
where ri = (ai, bi), ai, bi ∈ V . All discussion is based on the following essential
assumptions: (1) Graph G is connected; (2) When a new service request occurs,
k trucks are all free; (3) All trucks have the same load weight and the cost of
a truck with goods is θ times that of one without goods on the same distance,
and θ ≥ 1. For a known sequence R = (r1, ..., rm), let COPT(R) be the optimal
total cost after finishing it. For a new service request ri, if scheduling algorithm
A can schedule without information regarding the sequence next to ri, we call
A an on-line algorithm. For on-line algorithm A, if there are constants α and β
satisfying

CA(R) ≤ α · COPT(R) + β,

then for any possible R, A is called a competitive algorithm, where CA(R) is the
total cost with algorithm A to satisfy sequence R.

If there is no limit for the R and θ, the on-line truck problem is called P. In
problem P, if for any ri = (ai, bi), ai, bi and θ > 1 holds, the problem is called
P1. In problem P, if there is no limit for any ri = (ai, bi), but if θ = 1, the
problem is P2. In P2, if d(ai, bi) > 0, namely ai = bi, the problem is called P3.
In problem P, if d(ai, bi) = 0, namely ai = bi, it is called P4.
Lemma 1. [9] There exists an on-line algorithm for the k-server problem with
the competitive ratio 2k − 1.

Lemma 2. [1] Letting OPT be an optimal algorithm for an request sequence
R = (r1, ..., rm), then we have COPT(R) ≥ COPT(σ) +

∑m
i=1 (θ − 1) · d(ai, bi),

where σ = ((a1, a1), ..., (am, am)) and ri = (ai, bi).

Lemma 3. [1] For any algorithm A for a request sequence R = (r1, ..., rm), we
have CA(R) ≥ ∑m

i=1 θ · d(ai, bi), and COPT(R) ≥ ∑m
i=1 θ · d(ai, bi).

Lemma 4. [10] There exists an on-line algorithm for the k-server problem on
a real line with the competitive ratio k.

506 Weimin Ma et al.

Position Maintaining Strategy (PMS) [8]

For the present request ri = (ai, bi), after ai is reached, the truck reaching ai

must move from ai to bi with the goods to complete ri. When the service for ri

is finished, the PMS moves the truck at bi back to ai (empty) before the next
request arrives.

3 Off-Line Problem

In this section, two solutions for the off-line k-truck problem are discussed.

Definition (Configuration) On the metric space M, a possible position of k
trucks is called a configuration. That is, a configuration is a special k-multiset
whose elements consist of at least one and at most k points of space M. Here,
the special means that in the multiset the same node can be repeated from one to
k times.

3.1 Dynamic Programming (DP) Solution

In [6], a DP solution was given for the famous k-server problem. Similarly, we
can develop a DP solution for the k-truck problem.

Lemma 5. On a given graph G with n nodes, the number of possible configura-
tions of all k trucks is

(
n+k−1

n−1

)
, where k ≤ n.

Proof. Assume that all k trucks and all n nodes line up along a line from left
to right, thus there are n + k locations on which there is either a truck or a
node. Following that, we move all trucks between two nodes i and j (assuming
that node i is right to node j and that there are not any other nodes between
them) to node i. If there are not trucks between the two nodes, the meaning of
this operation is that no truck is moved on to node i. In addition, in order to
move all trucks on some nodes according to the above rules, we need to let the
extreme right location be a node. The final task is to choose n − 1 locations, on
which we will arrange the remaining n − 1 nodes, from the n + k − 1 locations.
Obviously, we have

(
n+k−1

n−1

)
choices. ��

Let function COPT(R, S) denote the cost of the minimum cost algorithm that
handles request sequence R and ends up in configuration S. As in paper [6], we
can compute this function recursively as follows, assuming that the trucks are
initially in configuration S0

COPT(ε, S) =
{

0 if S = S0
undefine otherwise

COPT(Rri, S) =
{

minT (COPT(R, T) + d(T, θ · (ai, bi), S)) if S = S0
undefine otherwise

where d(T, θ · (ai, bi), S) is the cost of transition from configuration T to config-
uration S and the last operation of transition is ai → bi (satisfying the request
ri at cost θ · (ai, bi)), T and S denote the configurations at time i − 1 and time
i, respectively, and ε denotes the empty request sequence.

New Results on the k-Truck Problem 507

Theorem 1. The above optimal off-line algorithm for the k-truck problem can
give an optimal solution with time proportional to m · (

n+k−1
n−1

)2
, where m is the

length of the request sequence (the number of requests).

Proof. Let |R| = m, we can develop a table-building method according to the
above discussion. Build a table with |R| + 1 rows, each of which implies a sub-
sequence of request sequence R, and

(
n+k−1

n−1

)
columns each of which denote a

possible configuration of trucks. Namely, the entry in row i and column j is
COPT(Ri, Sj), where Ri is the subsequence of R of length i. Each row of the
table can be built from the previous one within time

(
n+k−1

n−1

)2
. Furthermore,

only |R| = m rows need these computations. The proof is completed. ��

3.2 Minimum Cost Maximum Flow (MCMF) Solution

In [11], MCMF was used to resolve the off-line k-server problem. Our objective
is to find an optimal strategy to serve a sequence of m requests with k trucks,
if the request sequence is given in advance. Assume that the k-trucks initially
occupy one point, the origin. And denote the i-th request by the binary-tuple
(ai, bi). If there are m requests, the inputs to our problem are the superdiagonal
entries of an (m+1)× (m+1) matrix, whose (0, j) entry is the sum of cost from
the original to the location of j-request start aj (empty) and then to the request
destination bj (with the goods), j = 1, 2, ..., m, and whose (i, j) entry is the sum
of cost from the location of i-request destination to the location of j-request start
and then to the relevant destination with goods, j, 1 ≤ i < j ≤ m.

Theorem 2. There is an O(km2)-time off-line algorithm to find an optimal
schedule for k trucks to serve a sequence of m requests (whether or not the
triangle inequality holds).

Proof. We can resolve the off-line the k-truck problem (with or without tri-
angle inequality) by reducing it to the problem of finding a minimum cost
flow of maximum value in an acyclic network. Suppose that there are k trucks
t1, ..., tk and m requests r1, ..., rm, where ri = (ai, bi), and i = 1, ..., m, we
can build the following (2 + k + 3m)-node acyclic network: the vertex set is
V = {s, s1, ..., sk, a1, b1, b

′
1, ..., am, bm, b′

m, t}. In that vertex set, nodes s and t are
the source and sink, respectively. Each arc of our network has a capacity one.
There is an arc of cost 0 from s to each si, an arc of cost 0 form each b′

i to t, as
well as an arc to t from each si, of cost 0. ¿From each si, there is an arc to aj

of cost equal to the distance from the origin to the location of aj . ¿From each
aj , there is only an arc to bj of cost equal to θ · d(ai, bi). For i < j, there is an
arc from b′

i to aj of cost equal to the distance between bi to aj . Moreover, form
bi to b′

i there is an arc of cost −K, where K is an extremely large positive real.
The constructing of the network is completed.

It is easy to know that the value of the maximum flow in this network is k.
Using minimum-cost augmentation [12], we can find an integral min-cost flow of
value k in time O(km2), because all capacities are integral and the network is

508 Weimin Ma et al.

acyclic. An integral s → t flow of value k can be decomposed into k arc-disjoint
s → t paths, the ith one passing through si. Obviously, this flow saturates all
of the (bi, b

′
i) arcs, and hence corresponds to an optimal schedule for serving the

requests, the ith server serving exactly those requests contained in the s → t
path that passes through si, because −K is so small. ��

4 A Lower Bound

In this section we will give a lower bound of competitive ratio for the k-truck
problem on a symmetric metric space. In other words, any general on-line algo-
rithm for this problem, either a deterministic or a randomized algorithm, must
have a competitive factor of at least (θ + 1) · k/(θ · k + 2). In fact, we have
actually proven a slightly more general lower bound on the competitive ratio.
Suppose we wish to compare an on-line algorithm with k servers to an off-line
one with h ≤ k servers. Naturally, the factor decreases when the on-line algo-
rithm gets more servers than the off-line algorithm. We get the lower bound as
(θ + 1) · k/((θ + 2) · k − 2h + 2). A similar approach was taken in [6], where the
lower bound and matching upper bound are given for the traditional k-server
problem.

Theorem 3. Let A be an on-line algorithm for the symmetric k-truck problem
on a graph G with at least k nodes. Then, for any 1 ≤ h ≤ k, there exist request
sequences R1, R2, ... such that: (1) For all i, Ri is an initial subsequence of Ri+1,
and CA(Ri) < CA(Ri+1); (2) There exists an h-truck algorithm B (which may
start with its trucks anywhere) such that for all i,CA(Ri) > (θ+1)·k·CB(Ri)/((θ+
2) · k − 2h + 2).

Proof. Without loss of generality, assume A is an on-line algorithm and that the
k trucks start out at different nodes. Let H be a subgraph of G of size k + 2,
induced by the k initial positions of A’s trucks and two other vertexes. Define
R, A’s nemesis sequence on H, such that R(i) and R(i − 1) are the two unique
vertexes in H not covered by A and a request ri = d(R(i), R(i − 1)) occurs at
time i, for all i ≥ 1. Then

CA(Rt) =
t∑

i=1
(d(R(i + 1), R(i)) + θ · d(R(i), R(i − 1))) =

(1 + θ) ·
t−1∑
i=1

d(R(i + 1), R(i)) + d(R(i + 1), R(i)) + θ · d(R(1), R(0)),

because at each step R requests the node just vacated by A.
Let S be any h-element subset of H containing R(1) but not R(0). We can

define an off-line h -truck algorithm A(S) as follows: the trucks finally occupy
the vertices in set S. To process a request ri = d(R(i), R(i − 1)), the following
rule is applied: If Scontains R(i), move the truck at node R(i) to R(i − 1) with
goods to satisfy the request, and update the S to reflect this change. Otherwise
move the truck at node R(i − 2) to R(i) without goods and then to R(i − 1)
with goods, also to satisfy the request, and update S to reflect this change.

New Results on the k-Truck Problem 509

It is easy to see that for all i > 1, the set S contains R(i − 2) and does not
contain R(i − 1) when step i begins. The following observation is the key to the
rest of the proof: if we run the above algorithm starting with distinct equal-sized
sets S and T, then S and T never become equal, for the reason described in the
following paragraph.

Suppose that S and T differ before R(i) is processed. We shall show that
the versions of S and T created by processing R(i), as described above, also
differ. If both S and T contain R(i), they both move the truck on node R(i) to
node R(i − 1), on which there is exactly not any truck. The other nodes have
no changes, so S and T are still different and both S and T contain R(i − 1). If
exactly one of S or T contains R(i), then after the request exactly one of them
contains R(i− 1), so they still differ. If neither of them contains R(i), then both
change by dropping R(i − 2) and adding R(i − 1), so the symmetric difference
of S and T remains the same (non-empty).

Let us consider simultaneously running an ensemble of algorithms A(S),
starting from each h-element subset S of H containing R(1) but not R(0). There
are

(
k

h−1

)
such sets. Since no two sets ever become equal, the number of sets

remains constant. After processing R(i), the collection of subsets consists of all
the h element subsets of H which contain R(i − 1).

By our choice of starting configuration, step 1 just costs θ · d(R(1), R(0)). At
step i (for i ≥ 2), each of these algorithms either moves the truck at node R(i)
to R(i−1) (if S contains R(i)), at cost θ ·d(R(i), R(i−1)), or moves the truck at
node R(i − 2) to R(i) and then to R(i − 1) (if S does not contain R(i)), at cost
d(R(i−2), R(i))+ θ ·d(R(i), R(i−1)). Of the

(
k

h−1

)
algorithms being run,

(
k−1
h−1

)
of them (the ones which contain R(i − 2) but not contain either R(i)) incur the
cost of d(R(i−2), R(i))+θ ·d(R(i), R(i−1)). The remaining

(
k−1
h−2

)
of algorithms

incur the cost of θ · d(R(i), R(i − 1)). Thus, for step i, the total cost incurred by
all of the algorithms is(

k
h−1

) · θ · d(R(i), R(i − 1)) +
(

k−1
h−1

) · d(R(i − 2), R(i)).
The total cost of running all of these algorithms up to and including R(t) is

t∑
i=1

(
k

h−1

) · θ · d(R(i), R(i − 1)) +
t∑

i=2

(
k−1
h−1

) · d(R(i − 2), R(i)).

Thus the expected cost of one of these algorithms chosen at random is

CEXP(Rt) = θ ·
t∑

i=1
d(R(i), R(i− 1)) + (k−1

h−1)
(k

h−1)
·

t∑
i=2

d(R(i− 2), R(i)) ≤ (θ+2)k−2h+2
k ·

t−1∑
i=1

d(R(i), R(i + 1)) + (θ+1)k−h+1
k · d(R(1), R(0)) − k−h+1

k · d(R(t − 1), R(t))

This inequality holds for the triangle inequality and expending of the binomial
coefficients. Recall that the cost to A for the same steps was

CA(Rt) = (1 + θ) ·
t−1∑
i=1

d(R(i + 1), R(i)) + d(R(i + 1), R(i)) + θ · d(R(1), R(0)),

Because the distances are symmetric, the two summations of the CEXP(Rt) and
CA(Rt) are identical, except that both of the costs include some extra terms,

510 Weimin Ma et al.

which are bounded as a constant. Therefore, after some mathematical manipu-
lation (e.g., let t → ∞), we obtain

CA(Rt)
CEPT(Rt)

≥ (θ+1)·k
(θ+2)·k−2h+2 .

Finally, there must be some initial set whose performance is often no worse
than the average of the costs. Let S be this set, and A(S) be the algorithm
starting from this set. Let Ri be an initial subsequence of R, for which A(S)
does no worse than average. ��

Corollary 1. For any symmetric k-truck problem, there is no c-competitive al-
gorithm for c < (θ + 1) · k/(θ · k + 2).

Corollary 2. For any symmetric k-taxi problem, there is no c-competitive al-
gorithm for c < 2k/(k + 2).

5 Competitve Ratios

5.1 Position Maintaining Strategy Solution

In [1], with the PMS, the case under which θ > (c + 1)/(c − 1) was studied, and
a c-competitive algorithm was found to exist for the k-truck problem. In fact,
we can get a somewhat better result for general cases.

Theorem 4. For the on-line k-truck problem and a given graph G, if there is
a c-competitive on-line algorithm for the k-server problem on G, then: (1) If
θ > (c + 1)/(c − 1), then PMS is a c-competitivealgorithm; (2) If 1 ≤ θ ≤
(c + 1)/(c − 1), then PMS is a (c/θ + 1/θ + 1)-competitive algorithm.

Proof. For any R = (r1, ..., rm), where ri = (ai, bi), considering the k-server
problem’s request sequence σ = (a1, ..., am), let Aσ be a c-competitive algorithm
for the on-line k-server problem on graph G to satisfy the sequence. We design
algorithm A as follows. For current service request ri = (ai, bi), first schedule a
truck to ai using algorithm Aσ, then complete the ri with PMS. Thus total cost
of A is

CA(R) =
m∑

i=1
CA(ri) =

m∑
i=1

[CA(ai) + (θ + 1) · d(ai, bi)] =

CAσ (σ) + (1 + 1/θ) ·
m∑

i=1
θ · d(ai, bi)

where θ is defined above and θ ≥ 1. From lemma 2 and algorithm Aσ, we have

CAσ (σ) ≤ c · COPT(σ) + β ≤ c · [COPT(R) −
m∑

i=1
(θ + 1) · d(ai, bi)] + β

Then we get

CA(R) ≤ c · COPT(R) + [1 + 1/θ − c · (θ − 1)/θ] ·
m∑

i=1
θ · d(ai, bi)] + β

If θ > (c+1)/(c− 1), we get CA(R) ≤ c ·COPT(R)+β; if 1 ≤ θ ≤ (c+1)/(c− 1),
and with lemma 3, COPT(R) ≥ ∑m

i=1 θ · d(ai, bi),we have CA(R) ≤ (c/θ + 1/θ +
1) · COPT(R) + β, where c and β are some constants. ��

New Results on the k-Truck Problem 511

Combining Theorem 4 and Lemma 1, the following corollary holds.

Corollary 3. For the on-line k-truck problem on a given graph G, if θ > (c +
1)/(c − 1), holds, then there exists a (2k − 1)-competitive algorithm; if 1 ≤ θ ≤
(c + 1)/(c − 1), then there exists a (2k/θ + 1)-competitive algorithm.

5.2 Comparison of Two Algorithms

In [1], an algorithm B, here we called it the PG, is given for the problem
P1. The competitive ratio of algorithm B is 1 + λ/θ, where λ = dmax/dmin,
dmax = maxd(vi, vj), and dmin = mind(vi, vj),i �= j,vi, vj ∈ V . We denote
the PMS algorithm of subsection 5.1 by algorithm A. We may be confronted
with the problem of choosing one algorithm from A’ and B in different con-
texts. Respectively the competitive ratios of algorithms A and B are cA ={

2k − 1 if θ > (c + 1)/(c − 1)
2k/θ + 1 if 1 ≤ θ ≤ (c + 1)/(c − 1) and cB = 1 + λ/θ. Letting cA = cB, we

can get a k that makes the algorithm A and B equal as follows

k =
{

1 + λ/(2θ) if θ > (c + 1)/(c − 1)
λ/2 if 1 ≤ θ ≤ (c + 1)/(c − 1)

Theorem 5. For on-line k-truck problem P1, denoting the PMS and PG al-
gorithms by A and B, respectively, at the aspect of the competitive ratio: if
θ > (c + 1)/(c − 1) holds, if k ≤ 1 + λ/(2θ) then A is better than B, and
contrarily if k > 1 + λ/(2θ) then B is better than A; if 1 ≤ θ ≤ (c + 1)/(c − 1)
holds, if k ≤ λ/2 then A is better than B, and contrarily if k > λ/2 then B is
better than A.

5.3 Partial-Greedy Algorithm on a Special Line

Let G = (V, E) for the instance of an on-line k-truck problem consisting of a line
of n vertices with n − 1 edges whose lengths are equal to one. More formally,
we have that V = {vi|i = 1, ..., n} and E = {vivi+1|i = 1, ..., n − 1}. All edge-
weights are equal to one. It is natural to assume that no vertex has more than
one truck (otherwise, we can get at this situation at most cost of k · (k + 1)/2).
In addition, we assume that n ≥ k + 2 holds (otherwise the fourth case of the
following algorithm does not exist).

Partial-Greedy Algorithm. For the current request ri = (ai, bi) from the
request sequence R = (r1, ..., rm), schedule the k-truck problem P1 on the above
special line with the following rules:

(1) If there is a truck at ai and also one at bi, then PG moves the truck at ai

to bi complete the request, and at the same time PG moves the truck at bi

to ai with an empty load. The cost of PG for the ri is (1 + θ) · d(ai, bi) and
at present no vertex has more than one truck.

(2) If there is a truck at ai and no truck at bi, then PG moves the truck at ai

to bi to complete the request. The cost of PG for the ri is θ · d(ai, bi), and
at present no vertex has more than one truck.

512 Weimin Ma et al.

(3) If there is no truck at ai and there is a truck at bi, then PG moves the
truck at bi to ai first without a load, and after that moves it from ai to bi

to complete the request. The cost of PG for the ri is (1 + θ) · d(ai, bi) and at
present no vertex has more than one truck.

(4) If there is no truck at ai and bi, then PG moves the truck which is the
closest to ai (suppose that the truck is located at ci) with an empty load
and then moves to bi to complete the request. The cost of PG for the ri is
d(ci, ai) + θ · d(ai, bi), and again no vertex has more than one truck.

Theorem 6. PG is a (1+(n−k)/θ)-competitive algorithm for the k-truck prob-
lem P1 on the above special line.

Proof. For cases (1), (2) and (3), the cost of it PG is at most (1 + θ) times the
optimal cost for any request. For case (4), the extra cost is d(ci, ai). Since ci

is the closest occupied vertex to ai, we have d(ci, ai) ≤ (n − k) · d(ai, bi). Let
CPG(R) denote the cost of algorithm PG for request sequence R = (r1, ..., rm),
then we have

CPG(R) =
m∑

i=1
{max[d(bi, ai), d(ci, ai)]+ θ ·d(ai, bi)}+β ≤

m∑
i=1

{(n−k) ·d(ai, bi)+

θ · d(ai, bi)}+β = (1+ (n− k)/θ) ·
m∑

i=1
θ · d(ai, bi)+β ≤ (1+ (n− k)/θ) ·COPT(R)

where β is the cost for preconditioning the truck such that each vertex has
at most one truck and it is bounded by a constant related with G. The last
inequality holds for the lemma 3. ��

Similar to subsection 5.2, combining the lemma 4 and the above theorem 6,
we have the following theorem.

Theorem 7. For on-line k-truck problem P1 on the special line, denoting the
PMS and PG algorithms by A and B, respectively, at the aspect of the competitive
ratio: if θ > (c+1)/(c−1) holds, if k ≤ (n+θ)/(θ+1) then A is better than B, and
contrarily if k > (n+θ)/(θ+1) then B is better than A; if 1 ≤ θ ≤ (c+1)/(c−1)
holds, if k ≤ (n − 1)/2 then A is better than B, and contrarily if k > (n − 1)/2
then B is better than A.

6 Deeper On-Line k-Truck Problem

We call the on-line k-truck problem studied in previous sections, the Standard
On-line k-truck problem (STP). Here we will discuss another variant of it, the
Deeper On-line k-truck problem (DTP). We formulate DTP as follows:
Given a metric space M, and k trucks which move among the points of M, each
occupying one point of M, repeatedly, a request (a pair of points x, y ∈ M)
appears. However, only the node x of request occurring is known when the infor-
mation of the request is received, and the destination node y will not be known

New Results on the k-Truck Problem 513

until a truck has already been on the node of request occurring. To serve a re-
quest, an empty truck must first move to x and then move to y with goods from
x. How to minimize the total cost of all trucks?

We easily know that the results of the competitive ratio of the PMS still hold
for the DTP but these of the PG algorithm do not hold for the DTP.

Theorem 8. For the DTP on a given graph G, if there is a c-competitive on-
line algorithm for the k-server problem on G, then: (1) If θ > (c + 1)/(c − 1),
then PMS is a c-competitive algorithm; (2) If 1 ≤ θ ≤ (c+1)/(c− 1), then PMS
is a (c/θ + 1/θ + 1)-competitive algorithm.

7 Concluding Remarks

Most of the results of this paper can be extended to the relevant cases of the
k-taxi problem [8]. Although we get a lower bound of competitive ratio for the
k-truck problem, the optimal lower bound of the competitive ratio for it is still
open. Furthermore, whether there are some better on-line algorithms than PMS
or PG needs further investigation.

References

1. W.M.Ma, Y.F.Xu, and K.L.Wang, On-line k-truck problem and its competitive
algorithm. Journal of Global Optimization 21 (1): 15-25, September 2001.

2. S. Albers and S. Leonardi. Online algorithms. ACM Computing Surveys Vol.31.
Issue 3 Sept. 1999.

3. D.D.Sleator, R.E.Tarjan, Amortized efficiency of list update and paging rules,
Communication of the ACM, 28 (1985) 202-208.

4. A.Karlin, M.Manasse, L.Rudlph and D.D.Sleator. Competitive snoopy caching,
Algorithmica, 3:79-119,1988.

5. M.S.Manasse, L.A.McGeoch, and D.D.Sleator, Competitive algorithms for on-line
problems. In Proc. 20th Annual ACM Symp. on Theory of Computing, 322-33,
1988.

6. M.S.Manasse, L.A.McGeoch, and D.D.Sleator, Competitive algorithms for server
problems, Journal of Algorithms,1990(11),208-230.

7. S.Ben-David, S.Borodin, R.M.Karp, G.Tardos, and A. Wigderson. On the power if
randomization in on-line algorithms. In Proc. 22nd Annual ACM Symp. on Theory
of Computing, 379-386, 1990.

8. Y.F.Xu, K.L.Wang, and B. Zhu, On the k-taxi problem, Information, Vol.2, No.4,
1999.

9. E.Koutsoupias, C.Papadimitriou, On the k-server conjecture, STOC.,507-511,1994.
10. M.Chrobak, L.Larmore, An optimal algorithm for the server problem on trees,

SIAM Journal of Computing 20 (1991)144-148.
11. M.Chrobak, H.Karloff, T.Payne, S.Vishwanathan, New results on the server prob-

lem, SIAM Journal on Discrete Mathematics 4 (1991) 172-181.
12. R.Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, 1983,

109-111.

	1 Introduction
	2 Preliminaries
	3 Off-Line Problem
	3.1 Dynamic Programming (DP) Solution
	3.2 Minimum Cost Maximum Flow (MCMF) Solution

	4 A Lower Bound
	5 Competitve Ratios
	5.1 Position Maintaining Strategy Solution
	5.2 Comparison of Two Algorithms
	5.3 Partial-Greedy Algorithm on a Special Line

	6 Deeper On-Line textbf {textit {k}}-Truck Problem
	7 Concluding Remarks
	References

