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Abstract. Let F be a set ofn (n being an even number) fixed points and letM be a set
of n/2− 1 moving points, whose locations are to be determined, in the plane. Atopology
is a set of edges connecting these points in the setV = F ∪ M . Let E be a full 4-degree
Steiner topology; i.e., the topology forms a tree which contains fixed points of degree 1 and
moving points of degree 4, and letH(E) be a set of topologies which includeE and its
degeneracies. We define acanonicaltree overV as one whose topology belongs toH(E)
and in which the sum of two adjacent angles around any node is not less thanπ . In this
paper we prove that if a canonical tree exists, then it is the shortest (degree-4) network under
a given topologyE. We present anO(n2) time algorithm for finding a degree-4 shortest
network whose topology belongs toH(E).

1. Introduction

Designing optimal networks is a very important problem in many engineering fields,
e.g., in developing and building oil fields. Usually the petroleum pumped from oil
wells needs to be stored or processed in concentrators and later they are transport-
ed elsewhere. Suppose that there aren wells in an oil field, each is connected to a
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concentrator through a pipeline whose cost varies directly with its length and each
concentrator has acapacity k, i.e., the number of pipelines connecting to a concen-
trator cannot exceedk. The problem is how to choose locations form concentrators
so as to obtain a connected network minimizing the total cost. To satisfy all these
constraints we must build a minimal number of concentrators. Note that the concen-
trators can be built anywhere, including at the sites of the oil wells; furthermore,
the concentrators can be built on the same sites. By simple calculation,n,m, k sat-
isfy the relationm = d(n − 2)/(k − 2)e where dxe is the maximum integer less
thanx.

In practice, usually wells must connect to concentrators in some specified way. In
general, given a setF of n fixed points, a setM of d(n − 2)/(k − 2)e moving points
in the Euclidean plane, and a setH1 of topologies forV = F ∪ M , each of which is
a set of edges interconnecting (points in)V and satisfying that every fixed point is of
degree 1 and every moving point is of degree no more thank, we consider the problem of
how to choose locations forM such that the sum of edge lengths of the network, whose
topology belongs toH1, is minimized. Throughout this problem, zero-length connections
are allowed (which implies the collapsing of sites).

The general problem whenM, H1 are not given in advance andk = 3 is the fa-
mous Steiner problem in the Euclidean plane. Melzak [8] first established many basic
properties of a shortest interconnecting network and gave a finite solution to the Steiner
problem. Gilbert and Pollak [5] gave a thorough treatment of the Steiner problem and
coined the name “Steiner minimal tree” (SMT) for the shortest interconnecting net-
works. The Steiner problem is an intrinsically difficult one, having been shown to be
NP-complete [4]. Polynomial time approximation algorithms were studied by many re-
searchers [2], [3], [7], [9], [12]. In addition to those approximation algorithms, many
exact algorithms have also been developed [1], [10]. The difficulty of computing the
SMT is due to the large number of possible connections, or topologies. That might be
the reason why people study the Steiner problem whenM, H1 are given (i.e., under
a given topology) in addition to the practical constraints we described in the previous
paragraphs.

A full (degree-3) Steiner topology for a set of fixed and moving (Steiner) points is
one in which every fixed point is of degree 1 and every Steiner point is of degree 3.
Given a full degree-3 Steiner topology (with the Steiner or moving points), one may
minimize the total edge length by arranging the moving points to their optimal locations.
The corresponding network is called the (degree-3) shortest network under the given
Steiner topology. Hwang and Weng [6] proposed a luminary algorithm to compute the
shortest network under a given full degree-3 Steiner topology. The luminary algorithm
has a worst time complexity ofO(n2). Xue and Du [11] proved that this algorithm can
be improved to have average time complexityO(n logn).

In this paper we follow the footsteps of Hwang and Weng to study the shortest network
problem under a given full Steiner topology by considering the case fork = 4. Following
the aforementioned relation onn,m, k we assume thatn is an even number. We propose
anO(n2) time algorithm, also called the luminary algorithm, to find a degree-4 shortest
network under a given full Steiner topology, if one exists. In Section 2 we investigate
the problem by proving some basic properties and in Section 3 we present the luminary
algorithm.
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2. The Degree-4 Shortest Network Problem

Let F be a set ofn (n being an even number) fixed points and letM be a set ofn/2− 1
moving points in the plane. (For the convenience of description we sometimes call the
points inF terminalpoints and the points inM Steinerpoints.) A topology forV = F∪M
is a set of edges connecting points inV . A topology is called a degree-4 full Steiner
topology (D4FST) if every fixed point is of degree 1 and every Steiner point is of degree
4. A topologyE is a degeneracy of another topologyE′ if E can be obtained fromE′

by contracting edges, i.e., shrinking an edge and collapsing its two endpoints. LetD
denote the set of all D4FSTs forV and their degeneracies. Lett be a tree, and letT(t)
andl (t) be the topology and length oft , respectively. The problem can be formulated as
minT(t)∈D l (t) and we refer to this problem as thedegree-4 shortest network problem.

A canonicaltreetc for a given point setV = F ∪M is a tree network interconnecting
V such that its topology belongs toD and the sum of two adjacent angles around every
point of V is not less thanπ (which is referred to as theangle condition). For two given
pointsa andb, [a,b] denotes the line segment betweena andb and |ab| denotes the
length of [a,b].

We first consider the following base problem: for a setS of four pointsa,b, c,d in
the Euclidean plane, find a pointv such that|av| + |bv| + |cv| + |dv| is minimal. We
call v the optimal moving point forS. With triangle inequality, the following lemma is
easy to prove.

Lemma 1. If the convex hull of S,CH(S), is a convex quadrilateral, then the intersec-
tion of two diagonals of CH(S) is the optimal moving point. If CH(S) is a triangle, then
the optimal moving point is the point of S which is not a vertex of CH(S). If CH(S) is a
line segment, then either one of the two points in S which are not the endpoints of CH(S)
is the optimal moving point for S.

If T(t∗) ∈ D andl (t∗) = minT(t)∈D l (t), then we refer tot∗ as a degree-4 shortest
network (overD). We first prove the following fundamental theorem.

Theorem 1. A degree-4 shortest network t∗ whose topology belongs to D must be a
canonical tree.

Proof. Assume that Theorem 1 is false, then there must exist a pointv of t∗ which
violates the angle condition.

Suppose thata1, a2, anda3 are the points oft∗ which connect tov such that∠a1va2+
∠a2va3 < π . If v is a Steiner point with degree 4, then leta4 be the fourth point connecting
to v in t∗. Take a points on [a2, v] such that|a1s| + |a3s| < |a1v| + |a3v| (Fig. 1). By
the triangle inequality,|a4s| < |a4v| + |vs|. Therefore|a1s| + |a2s| + |a3s| + |a4s| <
|a1v| + |a2v| + |a3v| + |a4v|. By deleting the edges connecting tov as well as the point
v and adding the points and the edges [a1, s], [a2, s], [a3, s], and [a4, s], we obtain a
new treet whose lengthl (t) is obviously less thanl (t∗) andT(t) is identical toT(t∗).
This contradicts the minimality ofl (t∗). In the same way, we can obtain the proof when
v is a fixed point.
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Fig. 1. Illustration for the proof of Theorem 1.

Theorem 1 shows that a degree-4 shortest network under a given topology is a canon-
ical tree, this enlightens us to look for a canonical tree. LetE be a D4FST, letH(E) be a
set of topologies which includesE and its degeneracies, and letH∗(E) ⊆ H(E) denote
a subset of D4FSTs. The following theorem shows that if a canonical tree exists, then it
is the degree-4 shortest network under a given topology.

Theorem 2. Let E be a D4FST. If there exists a canonical tree whose topology is in
H(E), then the tree must be a shortest network for E.

Proof. We prove this theorem by induction on even numbern, which is the number of
fixed points inE. Forn = 4, the theorem is trivially true following Lemma 1.

Assume that the theorem holds forn − 2 wheren is an even number. Lett1 be a
canonical tree whose topologyT(t1) is in H∗(E) and let the size oft1 ben. Suppose that
there exists a shorter treet2 whose topology is inH(E). Let v1, v2, andv3 be the three
fixed points adjacent to the same Steiner points in E; furthermore, lets′ be the Steiner
point adjacent tos. Let p1 andp′1 (p2 andp′2) denote the locations ofs ands′ in t1 (t2),
respectively.

First, consider the casep1 6= v1, v2, v3. Let t∗i , i = 1,2, be a tree obtained fromti
by deleting the edges adjacent topi as well as the pointsv1, v3, pi and adding the edge
[ p′i , v2]. Note thatt∗1 is a canonical tree for the setV∗ = V − {v1, v3, s} with n − 2
fixed points and following the induction hypothesist∗1 is the corresponding degree-4
shortest network forV∗. Clearly we havel (t∗1 ) = l (t1) − |v1v3|. In the remainder of
this paragraph we show three subcases which all lead to a contradiction to the above
induction hypothesis. These subcases are illustrated in Fig. 2. Ifp2 does not collapse
into v1, v2, or v3, thenl (t∗2 ) = l (t2) − |v1v3| as shown in Fig. 2(a). Ifp2 collapses into

Fig. 2. Illustration for the proof of Theorem 2, case 1.
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Fig. 3. Illustration for the proof of Theorem 2, case 2.

eitherv1 or v3, without loss of generality, assume thatp2 collapses intov3 as shown in
Fig. 2(b), then by triangle inequalityl (t∗2 ) = l (t2)− |v1v3| − |v2v3| − |v3 p′2| + |v2 p′2| ≤
l (t2) − |v1v3|. If p2 collapses intov2 as shown in Fig. 2(c), then again by triangle
inequality l (t∗2 ) = l (t2) − |v1v2| − |v2v3| ≤ l (t2) − |v1v3|. Combining these three
subcases we havel (t∗1 ) = l (t1)− |v1v3| > l (t2)− |v1v3| ≥ l (t∗2 ), i.e., l (t∗1 ) > l (t∗2 ). On
the other hand, letE∗ be a D4FST forV∗ = V −{v1, v3, s} obtained fromE by deleting
the edges adjacent tos and the pointsv1, v3, ands, and adding the edge [v2, s′], we have
T(t∗1 ) ∈ H∗(E∗), T(t∗2 ) ∈ H(E∗). This contradicts the induction hypothesis thatT(t∗1 )
is a D4FST andt∗1 is the corresponding degree-4 shortest network.

Secondly, we consider the case whenp1 collapses into one ofv1, v2, andv3. Without
loss of generality, we consider the casep1 = v2. (When p1 = v1 or p1 = v3, we
can obtain similar proofs.) Similar to the previous paragraph we want to show that a
shorter treet2 does not exist. Again we have three subcases as illustrated in Fig. 3. If
p2 = v2 (Fig. 3(a)) then lett∗i , i = 1,2, be the tree obtained fromti by deleting the
edges [v1, v2], [v2, v3] and the pointsv1, v3. Note thatt∗1 is a canonical tree for the set
V∗ = V − {v1, v3} with n − 2 fixed points and following the induction hypothesis
t∗1 is the corresponding degree-4 shortest network forV∗. However, in this subcase,
l (t∗1 ) = l (t1) − |v1v2| − |v1v3| > l (t2) − |v1v2| − |v1v3| = l (t∗2 ). As T(t∗1 ) ∈ H∗(E∗),
T(t∗2 ) ∈ H(E∗) this contradicts the induction hypothesis thatl (t∗1 ) ≤ l (t∗2 ).

We now consider two other subcases for case 2 and it turns out that we need some
arguments which are different from those we have used. Without loss of generality, we
assume thatp2 is either located inside the edge [v2, v3] (Fig. 3(b)) or collapses intov3

(Fig. 3(c)). Whenp2 is located on the edge [v2, v3], let the extended line of [v1, v2]
intersect [p′1, p′2] at p′3. Defineα = |p′1 p′3|/|p′1 p′2| and let p3 be a point on [p1, p2]
such that|p1 p3| = α|p1 p2|. Assume thatV1 andV2 denote the vertex sets oft1 andt2,
including the points collapsed into terminal points, we construct a Steiner treet3 with
the vertex setV3 = αV1 + (1 − α)V2 = {αu1 + (1 − α)u2|u1 ∈ V1 and u2 ∈ V2

correspond to the same vertex inE} (see Fig. 3). Then we haveT(t3) ∈ H(E). Since
the tree length is a convex function,l (t2) < l (t3) < l (t1) holds. Let t ′3 be the tree
obtained fromt3 by substituting [v2, p′3], [v1, v2], and [v2, v3] for the edges adjacent
to p3 (i.e., [v1, p3], [v2, p3], [v3, p3], and [p3, p′3]), then T(t ′3) ∈ H(E). Following
triangle inequality|v2 p′3| + |v1v2| + |v2v3| < |v1 p3| + |v2 p3| + |v3 p3| + |p3 p′3|, hence
l (t ′3) < l (t3) < l (t1). Consequently, if we deletev1, v2, andp3 from t1 andt ′3 we have a
treet ′3− {v1, v2} shorter thant1− {v1, v2}; moreover, both withn− 2 fixed points. This
contradicts the induction hypothesis thatt1 − {v1, v2} is the shortest network forn− 2
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fixed points under the given topology. (Notice thatt1 − {v1, v2} is a canonical tree as
p1 = v2.) We can use similar arguments to prove the subcase forp2 = v3 (Fig. 3(c)).
We leave this as an exercise for the reader.

Theorems 1 and 2 basically show that a degree-4 shortest network under a given
topology exists if and only if a canonical tree under the same topology exists. To ob-
tain an efficient algorithm for computing a degree-4 shortest network (under a given
topology) we still need to show some extra property of a canonical tree (under a given
topology). The following theorem shows that if a degree-4 canonical tree under a D4FST
exists, then it must be unique. This is important in helping us developing an efficient
algorithm.

Theorem 3. If E is a D4FST, then there exists at most one canonical tree whose
topology belongs to H(E).

Proof. Again we prove this theorem by induction on even numbern, which is the
number of fixed points inE. Forn = 4, the theorem is trivially true by Lemma 1.

Suppose to the contrary that there exist two canonical treest1 andt2 with sizen whose
topologiesT(t1) andT(t2) belong toH∗(E). Let v1, v2, andv3 be three fixed points
adjacent to the same Steiner points in E, and lets′ be the Steiner point adjacent to
s. Denotes(s′) by pi (p′i ) in ti for i = 1,2 (see Fig. 2). Ifp1 and p2 are not on the
line segment [v1, v2] ([v2, v3] or [v1, v3]), then by the angle conditionti ’s cannot be
canonical. Without loss of generality, we assume that bothp1 and p2 are on [v1, v3].

If p1 = p2 or both p1 and p2 are inside [v1, v3], then lett∗i , i = 1,2, denote the tree
obtained fromti by deleting the edges [v1, pi ] and [v3, pi ] and the pointpi . Let E∗ be
the D4FST fromE by deleting the edges adjacent tos and adding the edge [p′1, v2], then
T(t∗1 ) ∈ H∗(E∗), T(t∗2 ) ∈ H∗(E∗). By the induction hypothesis,t∗1 = t∗2 as they have
the same number of fixed points,n − 2. It follows thatt1 = t2, which contradicts the
assumption thatt1 6= t2.

If p2 = v3 and eitherp1 is inside [v1, v3] (see Fig. 4(a)) orp1 = v1 (see Fig. 4(b)),
then we defineV1 (V2) as the vertex set oft1 (t2), including the collapsed points. Let
t3(β) be a tree onV3 = βV1 + (1− β)V2, where 0< β < 1, thenT(t3(β)) ∈ H(E).
By Theorem 2, it follows thatl (t1) = l (t2) = l (t3(β)). This implies thatl (t3(β)) is
also a shortest network. Letp3 = βp1 + (1− β)p2 and p′3 = βp′1 + (1− β)p′2. If
there exists someβ,0 < β < 1, such thatv2, p3, and p′3 are not collinear, then we

Fig. 4. Illustration for the proof of Theorem 3.
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can easily shortent3(β) by movingp3 or p′3, this contradicts the minimality ofl (t3(β)).
Therefore, the three pointsv2, p3, andp′3 are collinear for any 0< β < 1. Consequently
v2, p1, andp′1 are collinear, so arev2, v3, andp′2. Let t∗1 , t∗2 , andE∗ be defined as above.
Following the induction hypothesis,t∗1 = t∗2 , which implies that if we delete [v1, pi ],
[v3, pi ], and the pointpi from ti , thenp′1 coincides withp′2. Combining this with the the
collinearity ofv2, p1(v1), p′1 andv2, p2(v3), p′2, we havet1 = t2 and this contradicts the
assumption.

3. A Luminary Algorithm for Constructing a Canonical Tree

3.1. Some Concepts and Definitions

In the previous section we prove some important theorems for the degree-4 shortest
network problem. These theorems let us focus on the construction of a canonical tree
(under a given topology). The construction of a canonical tree inH(E) can be viewed
as orienting the edges ofE with a given set ofV , since the intersections of those edges
determine locations of the moving points. It is convenient to consider an edge as directed
and call a possible orientation a ray. A rayr has abase b(r )which is the starting point of
that (directed) edge and an angleθ(r )which measures the angle from the horizontal line
throughb(r ) to r in the counterclockwise direction. The other half-linee(r ) of r , which
also includesb(r ), is called theextensionof r . Two raysr1 andr2 are said toe-intersect
if e(r1) intersectse(r2). An entity which radiates rays and is associated with an edge of
E is called aluminary. Two luminaries are said beadjacentats if their associated edges
are both incident tos in E. A pair of rays, one from each luminary, which run into each
other from opposite directions is called anopposingpair.

A bundle Bis either a single ray or a set of rays satisfying the following conditions:

(1) B consists of a continuous set of rays with aspanθ(B) ≤ π . B includes either
none or one of its two boundary rays.

(2) All rays of B e-intersect at the same pointt (B), which is called thetip of B.
(3) The setb(B) = {b(r )|r ∈ B}, which is called thebaselineof B, is a straight line

segment or a single point.

Two bundles are said to be adjacent if their angles neither overlap nor leave a gap and
their baselines form a straight line segment. A multibundleM(B1, . . . , Bm) is either a
bundle(m = 1) or a sequence ofm ≥ 2 adjacent bundles such that

∑m
i=1 θ(Bi ), which

is called the angle ofM , does not exceedπ and any two rays ofM e-intersect each other
(Fig. 5).

Fig. 5. A ray, a bundle, and a multibundle.
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Fig. 6. Examples for star, triangle, and incomplete triangle.

An edge is aterminaledge if it is incident to a terminal point. Using the angle condition
of a canonical tree, which implies that the sum of two adjacent angles around any point in
the tree is at leastπ , we can show that the degree of the (moving) vertices in a canonical
tree does not exceed 4. Hence an edge can shrink without introducing a vertex whose
degree is more than 4 if and only if it is a terminal edge. Suppose that a luminaryL has
rays in all directions and its baselineb(L) = {b(r )|r ∈ L} is a point, thenL is called a
star if the edge associated withL is a terminal edge, otherwiseL is called aquasi-star. A
luminaryL is called atriangle (an incomplete triangle) if b(L) is a triangle (L consists
of some multibundles) (see Fig. 6).

3.2. The Luminary Algorithm

Now we describe the algorithm for constructing a canonical tree. The luminary algorithm
constructs a canonical tree under a given D4FST. If a canonical tree does not exist for
the given topology, then the algorithm returns empty. The luminary algorithm consists
of a merging stage and an orienting stage. At each step of the merging stage, three
luminariesL1, L2, andL3 adjacent at a Steiner points are merged into a new luminary
L4 associated with the fourth edge ofs. The details of the process of generatingL4 are
as follows.

First we find the opposing pairri j andr j i for Li andL j , whereri j ∈ Li , r j i ∈ L j , i <
j, i, j = 1,2,3. If ri j andr j i exist, and there exists a rayr in Lk (k 6= i, j,1 ≤ k ≤ 3)
such thatr intersects the line segment [b(ri j ),b(r j i )] at p and does not intersectb(Li )

andb(L j ), thenr can be modified into the rayr ′ in L4 by substituting the pointp for
the base ofr , i.e., b(r

′
) = p. This merge is called aSteiner merge(Fig. 7). If all of

three opposing pairs exist and one of the three luminaries is a star, assuming that isL1,
andr12 intersects withr13 and their directions are opposite, thenL4 is a quasi-star with
the baselineb(L1). We callr21 andr31 the axes of the quasi-star and the corresponding
merge abase merge. If one of L1, L2, andL3 is a star, assuming that isL1, and two
opposing pairsr12, r21 andr13, r31 exist, then the angular area generated byr21 andr31

is a subset ofL4. We call this angular area a prism andr21 andr31 the prism handles.
This merge is called astar merge. Both base merge and star merge can be thought of as
special cases for Steiner merge.

At the beginning of the merging stage, there aren stars associated with then terminal
edges, each merging step reduces the number of luminaries by two. The merging stage



Computing the Degree-4 Shortest Network under a Given Topology 445

Fig. 7. A Steiner merge.

ends aftern/2− 1 steps when only two luminaries are left. For convenience, we require
that neither of the remaining two luminaries be a star. This can be easily achieved, since
at the(n/2− 1)th step, at least one of the four luminaries is not a star and we can merge
the other three luminaries to satisfy the condition.

When only two luminaries are left, we enter the orienting stage. (This stage is very
much the same as in [6].) Note that there are3

2n− 2 edges inE but each merging step
retires three of them. Therefore at the end of the merging stage there is only one edge
unretired which must be associated with both luminaries left, from different ends of the
edge. We can orient the edge by finding the opposing pair, the segment between the two
bases of the opposing pair of rays, and then identifying and orienting the edge, if the
opposing pair exists. Otherwise, we claim that there does not exist a canonical tree in
H(E). Starting from this edge, we sequentially track back the rays which generated the
previously oriented rays, so that these retraced rays also become oriented. Eventually,
a set of 3

2n − 2 edges are oriented which constitute the canonical tree. We have the
following theorem.

Theorem 4. The luminary algorithm outputs a canonical tree if and only if one exists
in H(E).

Proof. For the three types of merging, it is clear that the merging stage preserves the
given topology inH(E). At the end of the merging stage we have two luminariesL and
L ′ associated with the same edgee. By the assumption in the previous paragraphs, the
last two luminaries cannot be stars. Thereforee is not a terminal edge. Ife shrinks or an
opposing pair cannot be found at the beginning of the orienting stage, then there is no
canonical tree inH(E).

As we have commented before, once an opposing pair is found, the remaining orienting
stage is automatic and must yield a canonical tree. This implies that each opposing pair
is unique, since the canonical tree inH(E) is unique.
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Fig. 8. Taking forms ofB1 andB2.

4. An Analysis of the Luminary Algorithm

In this section we present a detailed analysis of the luminary algorithm. LetB1 andB2

be two bundles. If the boundary rays ofB1 andB2 form the shapes as shown in Fig. 8,
then we refer toB1 and B2 as a taking form and call (a), (b), (c), (f) in Fig. 8 convex,
and (d), (e) in Fig. 8 concave. Otherwise, we say thatB1 andB2 is a nontaking form.

The following lemma is trivial and the proof is omitted.

Lemma 2. There exists an opposing pair between two bundles B1 and B2 if and only
if they are of a taking form and the shape of the taking form is convex.

Secondly, we discuss the time complexity for finding an opposing pair between two
multibundles.

Lemma 3. Determining an opposing pair between two multibundles M(B1, . . . , Bp)

and M(B′1, . . . , B′q) or showing the nonexistence of an opposing pair can be done in
O(p+ q) time.

Proof. Without loss of generality, assume that the two multibundlesM(B1, . . . , Bp)

andM(B′1, . . . , B′q) are shown as in Fig. 9(a). IfB1 andB′1 is of a taking form and the
shape of this taking form is convex, then by Lemma 2 we can obtain an opposing pair in
O(1) time by connectingt (B1) andt (B′1). If B1 andB′1 is of a taking form and the shape
of this taking form is concave orB1 and B′1 is of a nontaking form, then no opposing
pair betweenB1 andB′1 exists (Fig. 9(b)). Therefore, in the latter case an opposing pair

Fig. 9. Illustration for the proof of Lemma 3.
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betweenM(B1, . . . , Bp) and M(B′1, . . . , B′q) exists if and only if the opposing pair is
betweenM(B2, . . . , Bp) andM(B′2, . . . , B′q). We can repeat this procedure recursively.
Therefore, we can obtain an opposing pair or show its nonexistence in at mostO(p+q)
steps.

In Fig. 9(b) B1 and B′1 is of a nontaking form (as the common boundary ofB1

and B2 does not intersect the boundary ofB′1); therefore, to find the opposing pair
betweenM(B1, . . . , Bp) andM(B′1, . . . , B′q) or to show its nonexistence we only need
to search for the opposing pair or to show its nonexistence betweenM(B2, . . . , Bp) and
M(B′2, . . . , B′q).

Thirdly, we discuss the time complexity of merging three luminariesL1, L2, andL3

into a luminaryL4 with a number of bundles. Suppose that the number of bundles in
Li , i = 1,2,3, is l i .

The merge ofL1, L2, andL3 is nothing but a base merge, a star merge, or a Steiner
merge. No matter which merge is performed, we need to find an opposing pair. By
Lemma 3, determining the opposing pairs takesO(l1 + l2 + l3) time. Assume we have
found the opposing pairs, we now discuss the three types of merges for the given opposing
pairs. For a base merge, we know that the merge takes constant time and generates a
quasi-star which consists of two bundles. A star merge yields a prism which can be
determined by its two supporting handles, hence this merge can also be completed in
constant time. For a Steiner merge, we first merge the given opposing pairs with a
bundle, a star, or a quasi-star. By the definition of the Steiner merge, each of these
takes constant time and generates at most one bundle. As inL1, L2, andL3 we havel1,
l2, andl3 bundles, respectively, mergingL1, L2, andL3 with the opposing given pairs
takes at mostO(l1 + l2 + l3) time and the resultingL4 contains at mostl1 + l2 + l3
bundles.

Finally, we summarize the complexity of our algorithm. The algorithm starts withn
stars, hence 2n bundles. We know that the total number of bundles does not increase at
each merging step, henceL contains at most 2n bundles, all the time. Thus we conclude
that each merging step takes at mostO(n) time. Since there aren/2− 1 such steps, the
merging stage takes a total ofO(n2) time.

At the first orienting step we seek an opposing pair of rays and it takes at mostO(n)
time to find such a pair or claim its nonexistence following the above discussion. In the
remaining orienting stage we need to identify the three rays which generate a given ray
at mostn/2−1 times. Now all we need to show is that each orienting step takes constant
time. If the base of a rayr,b(r ), is on a fixed point, then the bundleB containing the
ray r is either a prism or a quasi-star. (The case when the bundle is a star will not occur
because the rayr may not be generated by other rays in this case.) The two supporting
handles of the prism or the two axes of the quasi-star are two of the three rays which
generater , and the edge with which the third ray is associated degenerates into a point.
If b(r ) is on a Steiner point, then the baseline ofB,b(B), is associated with two fixed
pointsu andv, and [u,b(r )] and [v,b(r )] are two of the three rays generatingr . Suppose
that the third ray is inB3, then [t (B3),b(r )] is the third ray. Since the tip and baseline
of each bundle will be stored during the construction of the bundles each canonical tree
edge can be oriented in constant time. Therefore, the orienting stage takes at mostO(n)
time.



448 Xu Yinfeng, Ye Jichang, and Binhai Zhu

Therefore, we have the following theorem:

Theorem 5. The luminary algorithm for constructing a canonical tree under a given
full Steiner topology takes O(n2) time.

An interesting question is whether we can apply an even more detailed analysis to
show the average time complexity of the luminary algorithm, like in [11].
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