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Abstract. Let F be a set oh (n being an even number) fixed points andlétbe a set
of n/2 — 1 moving points, whose locations are to be determined, in the plat@pdogy
is a set of edges connecting these points in thd/set F U M. Let E be a full 4-degree

Steiner topology; i.e., the topology forms a tree which contains fixed points of degree 1 and

moving points of degree 4, and Iet(E) be a set of topologies which include and its
degeneracies. We definecanonicaltree overV as one whose topology belongshaE)
and in which the sum of two adjacent angles around any node is not less tharhis

paper we prove that if a canonical tree exists, then itis the shortest (degree-4) network under

a given topologyE. We present a®(n?) time algorithm for finding a degree-4 shortest
network whose topology belongs K(E).

1. Introduction

Designing optimal networks is a very important problem in many engineering fields,
e.g., in developing and building oil fields. Usually the petroleum pumped from oil
wells needs to be stored or processed in concentrators and later they are transport-
ed elsewhere. Suppose that there mmells in an oil field, each is connected to a
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concentrator through a pipeline whose cost varies directly with its length and each
concentrator has eapacity k i.e., the number of pipelines connecting to a concen-
trator cannot exceekl. The problem is how to choose locations farconcentrators

so as to obtain a connected network minimizing the total cost. To satisfy all these
constraints we must build a minimal number of concentrators. Note that the concen-
trators can be built anywhere, including at the sites of the oil wells; furthermore,
the concentrators can be built on the same sites. By simple calculationk sat-

isfy the relationm = [(n — 2)/(k — 2)] where [X] is the maximum integer less
thanx.

In practice, usually wells must connect to concentrators in some specified way. In
general, given a sdt of n fixed points, a seM of [(n — 2)/(k — 2)] moving points
in the Euclidean plane, and a ddt of topologies forV = F U M, each of which is
a set of edges interconnecting (points Yh)and satisfying that every fixed point is of
degree 1 and every moving point is of degree no morelkthas consider the problem of
how to choose locations favl such that the sum of edge lengths of the network, whose
topology belongs tdl;, is minimized. Throughout this problem, zero-length connections
are allowed (which implies the collapsing of sites).

The general problem whekl, H; are not given in advance arkd= 3 is the fa-
mous Steiner problem in the Euclidean plane. Melzak [8] first established many basic
properties of a shortest interconnecting network and gave a finite solution to the Steiner
problem. Gilbert and Pollak [5] gave a thorough treatment of the Steiner problem and
coined the name “Steiner minimal tree” (SMT) for the shortest interconnecting net-
works. The Steiner problem is an intrinsically difficult one, having been shown to be
NP-complete [4]. Polynomial time approximation algorithms were studied by many re-
searchers [2], [3], [7], [9], [12]. In addition to those approximation algorithms, many
exact algorithms have also been developed [1], [10]. The difficulty of computing the
SMT is due to the large number of possible connections, or topologies. That might be
the reason why people study the Steiner problem wiklerH; are given (i.e., under
a given topology) in addition to the practical constraints we described in the previous
paragraphs.

A full (degree-3) Steiner topology for a set of fixed and moving (Steiner) points is
one in which every fixed point is of degree 1 and every Steiner point is of degree 3.
Given a full degree-3 Steiner topology (with the Steiner or moving points), one may
minimize the total edge length by arranging the moving points to their optimal locations.
The corresponding network is called the (degree-3) shortest network under the given
Steiner topology. Hwang and Weng [6] proposed a luminary algorithm to compute the
shortest network under a given full degree-3 Steiner topology. The luminary algorithm
has a worst time complexity dd(n?). Xue and Du [11] proved that this algorithm can
be improved to have average time complexXityn logn).

In this paper we follow the footsteps of Hwang and Weng to study the shortest network
problem under a given full Steiner topology by considering the cadefo#. Following
the aforementioned relation anm, k we assume thatis an even number. We propose
anO(n?) time algorithm, also called the luminary algorithm, to find a degree-4 shortest
network under a given full Steiner topology, if one exists. In Section 2 we investigate
the problem by proving some basic properties and in Section 3 we present the luminary
algorithm.
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2. The Degree-4 Shortest Network Problem

Let F be a set oh (n being an even number) fixed points andNéte a set oh/2 — 1
moving points in the plane. (For the convenience of description we sometimes call the
points inF terminalpoints and the points il Steinempoints.) Atopology foVV = FUM
is a set of edges connecting points\Vin A topology is called a degree-4 full Steiner
topology (D4FST) if every fixed point is of degree 1 and every Steiner point is of degree
4. A topologyE is a degeneracy of another topologyif E can be obtained front’
by contracting edges, i.e., shrinking an edge and collapsing its two endpointb. Let
denote the set of all DAFSTSs fdf and their degeneracies. Liebe a tree, and I€E (t)
andl (t) be the topology and length bfrespectively. The problem can be formulated as
minr ¢ ep | (t) and we refer to this problem as tHegree4 shortest network problem

A canonicaltreet. for a given point se¥ = F U M is a tree network interconnecting
V such that its topology belongs @ and the sum of two adjacent angles around every
point of V is not less tham (which is referred to as thengle conditioi). For two given
pointsa andb, [a, b] denotes the line segment betwegandb and|ab| denotes the
length of f, b].

We first consider the following base problem: for a Seif four pointsa, b, ¢, d in
the Euclidean plane, find a pointsuch thafav| + |bv| + |cv| + |dv| is minimal. We
call v the optimal moving point foS. With triangle inequality, the following lemma is
easy to prove.

Lemma 1. Ifthe convex hull of SCH(S), is a convex quadrilaterathen the intersec-
tion of two diagonals of CKS) is the optimal moving pointf CH(S) is a triangle then
the optimal moving point is the point of S which is not a vertex of §Hf CH(S) is a
line segmenthen either one of the two points in S which are not the endpoints 68CH
is the optimal moving point for.S

If T(t*) € D andl(t*) = minygep | (), then we refer ta* as a degree-4 shortest
network (overD). We first prove the following fundamental theorem.

Theorem 1. A degree4 shortest network*twhose topology belongs to D must be a
canonical tree

Proof. Assume that Theorem 1 is false, then there must exist a pafitt* which
violates the angle condition.

Suppose that;, ap, andas are the points df* which connect ta such thavajva, +
ZLayvag < w. If visa Steiner pointwith degree 4, thendgbe the fourth point connecting
to v in t*. Take a poins on [ag, v] such thatia;s| + |ags| < |ayv| + |agv| (Fig. 1). By
the triangle inequalityass| < |asv| + |vs|. Thereforela;s| + |ags| + |ass| + |asS| <
laiv| + |agv| + |agv| + |agv|. By deleting the edges connectingutas well as the point
v and adding the poirg and the edgesa|, 5], [az, ], [as, S], and [ay, S|, we obtain a
new treet whose length (t) is obviously less thah(t*) andT (t) is identical toT (t*).
This contradicts the minimality dit*). In the same way, we can obtain the proof when
v is a fixed point. |
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Fig. 1. lllustration for the proof of Theorem 1.

Theorem 1 shows that a degree-4 shortest network under a given topology is a canon-
ical tree, this enlightens us to look for a canonical tree B bt a DAFST, leH (E) be a
set of topologies which includds and its degeneracies, and k¢t (E) € H(E) denote
a subset of DAFSTs. The following theorem shows that if a canonical tree exists, then it
is the degree-4 shortest network under a given topology.

Theorem 2. Let E be a BIFST If there exists a canonical tree whose topology is in
H (E), then the tree must be a shortest network for E

Proof. We prove this theorem by induction on even numterhich is the number of
fixed points inE. Forn = 4, the theorem is trivially true following Lemma 1.

Assume that the theorem holds for— 2 wheren is an even number. Ldéi be a
canonical tree whose topologyt;) is in H*(E) and let the size df; ben. Suppose that
there exists a shorter tréewhose topology is irH (E). Let vy, v, andvs be the three
fixed points adjacent to the same Steiner psiint E; furthermore, les’ be the Steiner
point adjacent ts. Let p; and p; (p2 and p;) denote the locations afands’ in t; (to),
respectively.

First, consider the casg, # v1, v2, v3. Lett*,i = 1, 2, be a tree obtained fromy
by deleting the edges adjacentgpas well as the points,, vs, p; and adding the edge
[P, v2]. Note thatt] is a canonical tree for the s8t* = V — {vq, v3, S} with n — 2
fixed points and following the induction hypothesjsis the corresponding degree-4
shortest network fo*. Clearly we havd (t;) = I(t) — |vivs|. In the remainder of
this paragraph we show three subcases which all lead to a contradiction to the above
induction hypothesis. These subcases are illustrated in Fig.[®.dbes not collapse
into vy, vy, orvg, thenl (ty) = I (t2) — |vivs| as shown in Fig. 2(a). Ip, collapses into

Uy Uy 'U2(}72)
(a) (b) pa =3 (c) p2 =19

Fig. 2. lllustration for the proof of Theorem 2, case 1.
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! p’l
w b2 P’s
i/
Vo vy ‘b 23
1 U3
3 V-
01
(a) pr =p2 = v2 (b) pr = v2,p2 € [va, v3] (¢) pL=va,pp =v3

Fig. 3. lllustration for the proof of Theorem 2, case 2.

eitherv; or vz, without loss of generality, assume th@t collapses intas as shown in
Fig. 2(b), then by triangle inequalityt}) = I (t2) — |vivs| — [vovz| — [v3P5| + [v2P5| <
[(t2) — |vyvs]. If py collapses intov, as shown in Fig. 2(c), then again by triangle
inequality | (t7) = 1(t2) — |viva| — |vovs] < I(t2) — |viva]. Combining these three
subcases we havét;) = | (t1) — |vivg| > | (t2) — |vrvs] = [(t3), i.e.,[(t]) > [(t3). On
the other hand, I€E* be a DAFST fol* = V — {v1, vs, S} obtained fromE by deleting
the edges adjacent sand the points, vs, ands, and adding the edge, '], we have
T(ty) € H*(E*), T(t3) € H(E™). This contradicts the induction hypothesis tfidt;)

is a DAFST and; is the corresponding degree-4 shortest network.

Secondly, we consider the case wharcollapses into one afy, v, andvs. Without
loss of generality, we consider the cage = v,. (Whenp; = vy or p1 = v3, we
can obtain similar proofs.) Similar to the previous paragraph we want to show that a
shorter tred, does not exist. Again we have three subcases as illustrated in Fig. 3. If
p. = vy (Fig. 3(a)) then let*,i = 1, 2, be the tree obtained from by deleting the
edges {1, vo], [vo, v3] and the pointay, vs. Note thatt] is a canonical tree for the set
V* = V — {v1, v3} with n — 2 fixed points and following the induction hypothesis
t; is the corresponding degree-4 shortest network\fér However, in this subcase,
I(t7) = [(t) — [vavz| — [vavg| > 1(t2) — [v1vz| — [vivs] = 1(t3). As T (t) € H*(E"),

T(t3) € H(E*) this contradicts the induction hypothesis th@f) < I(t3).

We now consider two other subcases for case 2 and it turns out that we need some
arguments which are different from those we have used. Without loss of generality, we
assume thap; is either located inside the edge [ vs] (Fig. 3(b)) or collapses intog
(Fig. 3(c)). Whenp; is located on the edgey], vs], let the extended line ofvf, vs]
intersect p;, p5] at p;. Definea = |pypsl/IPL P, and letpz be a point on py, pa]
such that p; ps| = «|p1p2|. Assume tha¥/; andV, denote the vertex sets tifandty,
including the points collapsed into terminal points, we construct a Steinetstreieh
the vertex seV; = aVi + (1 — a)Vo = {au; + (1 — a)Upju; € Vi andu, € Vs
correspond to the same vertexHy} (see Fig. 3). Then we have(tz) € H(E). Since
the tree length is a convex functiont;) < I(tz) < I(t1) holds. Lett; be the tree
obtained fromts by substituting {2, p5], [v1, v2], and [u2, v3] for the edges adjacent
to ps (i.e., [vi, ps], [vo, psl, [vs, ps], and [ps, pgl), then T (t;) € H(E). Following
triangle inequalitylva P3| + [v1vz| + [v2vs| < [v1Pal + [v2Pa| + [vaps| + | P3 P3|, hence
[(t3) < I(t3) < |(t1). Consequently, if we deletg, v,, and ps from t; andt; we have a
treet; — {v1, vo} shorter thar; — {v1, v2}; moreover, both wittm — 2 fixed points. This
contradicts the induction hypothesis tiat {v1, vo} is the shortest network for — 2
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fixed points under the given topology. (Notice that- {vs, v} is a canonical tree as
p: = vo.) We can use similar arguments to prove the subcase.fet vz (Fig. 3(c)).
We leave this as an exercise for the reader. O

Theorems 1 and 2 basically show that a degree-4 shortest network under a given
topology exists if and only if a canonical tree under the same topology exists. To ob-
tain an efficient algorithm for computing a degree-4 shortest network (under a given
topology) we still need to show some extra property of a canonical tree (under a given
topology). The following theorem shows that if a degree-4 canonical tree under a DAFST
exists, then it must be unique. This is important in helping us developing an efficient
algorithm.

Theorem 3. If E is a D4FST, then there exists at most one canonical tree whose
topology belongs to KE).

Proof. Again we prove this theorem by induction on even numiewhich is the
number of fixed points irfE. Forn = 4, the theorem is trivially true by Lemma 1.

Suppose to the contrary that there exist two canonical tyesslt, with sizen whose
topologiesT (t;) and T (ty) belong toH*(E). Let v, vp, andvs be three fixed points
adjacent to the same Steiner posin E, and lets’ be the Steiner point adjacent to
s. Denotes(s’) by pi(p)) intj fori = 1,2 (see Fig. 2). Ifp; and p, are not on the
line segment s, vy] ([v2, v3] Or [v1, v3]), then by the angle conditioy’s cannot be
canonical. Without loss of generality, we assume that Ipgtand p, are on p1, vg].

If p1 = p2 or bothp; and p, are inside {1, v3], then lett*, i = 1, 2, denote the tree
obtained from; by deleting the edges{, pi] and [vs, pi] and the pointp;. Let E* be
the D4FST fromE by deleting the edges adjacenstand adding the edge{, v,], then
T(ty) € H*(E*), T(t;) € H*(E*). By the induction hypothesi$; = t; as they have
the same number of fixed points,— 2. It follows thatt; = t,, which contradicts the
assumption that, # t,.

If p, = vz and eitherp; is inside p1, v3] (see Fig. 4(a)) op; = vy (see Fig. 4(b)),
then we define/; (V) as the vertex set df (tp), including the collapsed points. Let
t3(B) be a tree oz = BV1 + (1 — B)Vs, where O< B < 1, thenT (t3(8)) € H(E).
By Theorem 2, it follows that(t;) = [(t2) = I(t3(8)). This implies that (t3(8)) is
also a shortest network. Lgs = Bp1 + (1 — g)pz andp; = Bp; + (L — B)p5. If
there exists somg,0 < g < 1, such that,, ps, and p; are not collinear, then we

V4 P3 2 41 p3 1)
v b3 P\ L3
T p2(vs) (p1) pa{vs)

g g

(a) (b)

Fig. 4. lllustration for the proof of Theorem 3.
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can easily shortetz(8) by moving ps or p;, this contradicts the minimality dftz(8)).
Therefore, the three points, ps, andpj are collinear for any &< 8 < 1. Consequently
v2, P1, andpj are collinear, so arey, vz, andp;. Lett], t3, andE* be defined as above.
Following the induction hypothesis; = t;, which implies that if we deletev, pi],
[vs, pi], and the pointy; from t;, thenp] coincides withp,. Combining this with the the
collinearity ofvz, p1(v1), p; andvz, p2(vs), P,, we have; = t; and this contradicts the
assumption. |

3. A Luminary Algorithm for Constructing a Canonical Tree
3.1. Some Concepts and Definitions

In the previous section we prove some important theorems for the degree-4 shortest
network problem. These theorems let us focus on the construction of a canonical tree
(under a given topology). The construction of a canonical treé (&) can be viewed
as orienting the edges & with a given set oW, since the intersections of those edges
determine locations of the moving points. It is convenient to consider an edge as directed
and call a possible orientation a ray. A raljas abase kir ) which is the starting point of
that (directed) edge and an anglg) which measures the angle from the horizontal line
throughb(r) tor in the counterclockwise direction. The other half-lafe) of r, which
also include$(r), is called theextensiorof r. Two raysr; andr, are said te-intersect
if e(ry) intersect®(r,). An entity which radiates rays and is associated with an edge of
E is called duminary. Two luminaries are said kmdjacentats if their associated edges
are both incident tg in E. A pair of rays, one from each luminary, which run into each
other from opposite directions is called epposingpair.

A bundle Bis either a single ray or a set of rays satisfying the following conditions:

(1) B consists of a continuous set of rays wits@and (B) < . B includes either
none or one of its two boundary rays.

(2) Allrays of B e-intersect at the same poirB), which is called theip of B.

(3) The seb(B) = {b(r)|r € B}, which is called thdaselineof B, is a straight line
segment or a single point.

Two bundles are said to be adjacent if their angles neither overlap nor leave a gap and
their baselines form a straight line segment. A multiburidleBy, . .., By) is either a
bundle(m = 1) or a sequence oh > 2 adjacent bundles such th@im:l@(Bi), which
is called the angle df1, does not exceed and any two rays oM e-intersect each other

(Fig. 5).
t Bl
b(r)—— t(B><]€ t(Bz) %é

a ray a bundle a multibundle

Fig. 5. Aray, a bundle, and a multibundle.
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ke BV «&g
. an incomplete an incomplete
star quasi-star a triangle triangle triangle
with two prisms without a prism

Fig. 6. Examples for star, triangle, and incomplete triangle.

An edgeis derminaledge ifitis incident to a terminal point. Using the angle condition
of a canonical tree, which implies that the sum of two adjacent angles around any pointin
the tree is at least, we can show that the degree of the (moving) vertices in a canonical
tree does not exceed 4. Hence an edge can shrink without introducing a vertex whose
degree is more than 4 if and only if it is a terminal edge. Suppose that a lunirfzag
rays in all directions and its baselibéL) = {b(r)|r € L} is a point, therL is called a
starif the edge associated withis a terminal edge, otherwigeis called eguasi-star A
luminaryL is called ariangle (an incomplete trianglgif b(L) is a triangle L consists
of some multibundles) (see Fig. 6).

3.2. The Luminary Algorithm

Now we describe the algorithm for constructing a canonical tree. The luminary algorithm
constructs a canonical tree under a given D4FST. If a canonical tree does not exist for
the given topology, then the algorithm returns empty. The luminary algorithm consists
of a merging stage and an orienting stage. At each step of the merging stage, three
luminariesL1, L, andL3 adjacent at a Steiner poistare merged into a new luminary
L4 associated with the fourth edge ©fThe details of the process of generatingare
as follows.

First we find the opposing paiy; andrj; for L; andL;, wherer;; € Li,rj e Lj,i <
j, i, ] =1,2,3. Ifrjj andrj; exist, and there exists arayin Ly (k #1i, j,1 <k < 3)
such that intersects the line segmer(f;; ), b(rji )] at p and does not intersebtL;)
andb(L;), thenr can be modified into the ray in L4 by substituting the poinp for
the base of, i.e.,b(r') = p. This merge is called &teiner mergdFig. 7). If all of
three opposing pairs exist and one of the three luminaries is a star, assumind-that is
andr; intersects withr13 and their directions are opposite, thiepis a quasi-star with
the baselind(L ). We callrp; andrs; the axes of the quasi-star and the corresponding
merge abase mergelf one of L1, Ly, andLg is a star, assuming that ls;, and two
opposing pairsiy, ro; andris, ra; exist, then the angular area generated yandrs;
is a subset of 4. We call this angular area a prism and andrs; the prism handles.
This merge is called star merge Both base merge and star merge can be thought of as
special cases for Steiner merge.

At the beginning of the merging stage, theremgtars associated with timterminal
edges, each merging step reduces the number of luminaries by two. The merging stage
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B el
luminary edge
for Ll’ Lzand L3

trace of r

-« —————

[b(r ij)s b(r Jl)]

P

luminary edge for L

Fig. 7. A Steiner merge.

ends aften/2 — 1 steps when only two luminaries are left. For convenience, we require
that neither of the remaining two luminaries be a star. This can be easily achieved, since
atthe(n/2 — 1)th step, at least one of the four luminaries is not a star and we can merge
the other three luminaries to satisfy the condition.

When only two luminaries are left, we enter the orienting stage. (This stage is very
much the same as in [6].) Note that there %r& 2 edges irE but each merging step
retires three of them. Therefore at the end of the merging stage there is only one edge
unretired which must be associated with both luminaries left, from different ends of the
edge. We can orient the edge by finding the opposing pair, the segment between the two
bases of the opposing pair of rays, and then identifying and orienting the edge, if the
opposing pair exists. Otherwise, we claim that there does not exist a canonical tree in
H (E). Starting from this edge, we sequentially track back the rays which generated the
previously oriented rays, so that these retraced rays also become oriented. Eventually,
a set ofgn — 2 edges are oriented which constitute the canonical tree. We have the
following theorem.

Theorem 4. The luminary algorithm outputs a canonical tree if and only if one exists
in H(E).

Proof. For the three types of merging, it is clear that the merging stage preserves the
given topology inH (E). At the end of the merging stage we have two luminatiesd
L’ associated with the same edgeBy the assumption in the previous paragraphs, the
last two luminaries cannot be stars. Thereforenot a terminal edge. B shrinks or an
opposing pair cannot be found at the beginning of the orienting stage, then there is no
canonical tree iH (E).

Aswe have commented before, once an opposing pair is found, the remaining orienting
stage is automatic and must yield a canonical tree. This implies that each opposing pair
is unique, since the canonical treeH(E) is unique. |
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A ¥ 2
B1 Bz Bl
2

4
(b) (c)
/\Z |\/?
B By B 2
(e) (#)
Fig. 8. Taking forms ofB; andB,.

B
By

4. An Analysis of the Luminary Algorithm

In this section we present a detailed analysis of the luminary algorithnBiahd B,

be two bundles. If the boundary rays Bf and B, form the shapes as shown in Fig. 8,

then we refer tdB; and B, as a taking form and call (a), (b), (c), (f) in Fig. 8 convex,

and (d), (e) in Fig. 8 concave. Otherwise, we say B@aandB; is a nontaking form.
The following lemma is trivial and the proof is omitted.

Lemma 2. There exists an opposing pair between two bundlear8l B if and only
if they are of a taking form and the shape of the taking form is convex

Secondly, we discuss the time complexity for finding an opposing pair between two
multibundles.

Lemma 3. Determining an opposing pair between two multibundle&M. .., By)
and M(B, ..., By) or showing the nonexistence of an opposing pair can be done in
O(p+q)time

Proof. Without loss of generality, assume that the two multibundfg®;, . .., By)
andM(Bg, ..., By) are shown as in Fig. 9(a). B, and B is of a taking form and the
shape of this taking form is convex, then by Lemma 2 we can obtain an opposing pair in
O(1) time by connecting(B,) andt(B)). If B, andB; is of a taking form and the shape

of this taking form is concave dB, and B; is of a nontaking form, then no opposing
pair betweerB; andB; exists (Fig. 9(b)). Therefore, in the latter case an opposing pair

Fig. 9. [lllustration for the proof of Lemma 3.
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betweenM (B4, ..., Bp) andM(By, ..., B)) exists if and only if the opposing pair is
betweerM (B, ..., Bp) andM(B;, .. ., Bé). We can repeat this procedure recursively.
Therefore, we can obtain an opposing pair or show its nonexistence in aOfpstq)
steps. O

In Fig. 9(b) B; and B; is of a nontaking form (as the common boundaryBaf
and B, does not intersect the boundary Bf); therefore, to find the opposing pair

betweenM (Bq, ..., By) andM(By, ..., B(’]) or to show its nonexistence we only need
to search for the opposing pair or to show its nonexistence betiges, . .., By) and
M(B, ..., By).

Thirdly, we discuss the time complexity of merging three luminatigslL ,, andL 3
into a luminaryL 4 with a number of bundles. Suppose that the number of bundles in
Li,i =123, iS|i.

The merge ol 4, Ly, andL 3 is nothing but a base merge, a star merge, or a Steiner
merge. No matter which merge is performed, we need to find an opposing pair. By
Lemma 3, determining the opposing pairs taki$; + I, + I3) time. Assume we have
found the opposing pairs, we now discuss the three types of merges for the given opposing
pairs. For a base merge, we know that the merge takes constant time and generates a
guasi-star which consists of two bundles. A star merge yields a prism which can be
determined by its two supporting handles, hence this merge can also be completed in
constant time. For a Steiner merge, we first merge the given opposing pairs with a
bundle, a star, or a quasi-star. By the definition of the Steiner merge, each of these
takes constant time and generates at most one bundle.lAs lrp, andL 3 we have,,

I, andl; bundles, respectively, mergirig;, L,, andL3 with the opposing given pairs
takes at mosO(l; + |, + I3) time and the resultind 4 contains at mosty; + |, + I3
bundles.

Finally, we summarize the complexity of our algorithm. The algorithm starts mith
stars, hencer2bundles. We know that the total number of bundles does not increase at
each merging step, hentecontains at mosti2bundles, all the time. Thus we conclude
that each merging step takes at m@gh) time. Since there ane/2 — 1 such steps, the
merging stage takes a total 6f(n?) time.

At the first orienting step we seek an opposing pair of rays and it takes atOiost
time to find such a pair or claim its nonexistence following the above discussion. In the
remaining orienting stage we need to identify the three rays which generate a given ray
at mosin/2 — 1 times. Now all we need to show is that each orienting step takes constant
time. If the base of a ray, b(r), is on a fixed point, then the bundi containing the
rayr is either a prism or a quasi-star. (The case when the bundle is a star will not occur
because the ray may not be generated by other rays in this case.) The two supporting
handles of the prism or the two axes of the quasi-star are two of the three rays which
generate, and the edge with which the third ray is associated degenerates into a point.
If b(r) is on a Steiner point, then the baselineByfb(B), is associated with two fixed
pointsu andv, and U, b(r)] and [v, b(r)] are two of the three rays generatingsuppose
that the third ray is irBs, then f(Bs), b(r)] is the third ray. Since the tip and baseline
of each bundle will be stored during the construction of the bundles each canonical tree
edge can be oriented in constant time. Therefore, the orienting stage takes @t(most
time.
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Therefore, we have the following theorem:

Theorem 5. The luminary algorithm for constructing a canonical tree under a given
full Steiner topology takes @?) time

An interesting question is whether we can apply an even more detailed analysis to
show the average time complexity of the luminary algorithm, like in [11].
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