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Abstract. We integrate probability distribution into pure competitive
analysis to improve the performance measure of competitive analysis,
since input sequences of the leasing problem have simple structure and
favorably statistical property. Let input structures be the characteristic
of geometric distribution, and we obtain optimal on-line algorithms and
their competitive ratios. Moreover, the introducing of interest rate would
diminish the uncertainty involved in the process of decision making and
put off the optimal purchasing date.

1 Introduction

In recent years, competitive analysis has been gaining recognition for being a
complementary approach in the analysis of algorithmic decision-making under
uncertainty. With the emergence of many on-line financial papers, the competi-
tive approach is shown to be productive for a variety of financial problems. For
on-line leasing problem, the prototype was the well-known “Ski-Rental” exam-
ple put forward by Karp in the field of theoretical computer science in 1992 [9].
Subsequently, a series of research has been carried out on the basic model. In
1994, Karlin et al. made on-line analysis for what they called “the ski-rental-
family of problem” [8]. In 1998, S. Irani et al. studied the situation which the
purchasing price varies but the rental cost stays at a fixed price [7]. In 1999,
R. El-Yaniv et al. investigated the leasing problem with interest rate [4]. In the
same year, S. al-Binali developed a famous Risk–Reward Framework to analyze
the rental problem and unidirectional trading problem [2]. In 2001, S. Albers
et al. introduced and explored natural delayed information and action models
to investigate several well-known on-line problems inclusive of the rental prob-
lem [1]. However, the previous research always avoids probabilistic assumption
intentionally. In 2002, H. Fujiwara et al. firstly integrated probabilistic distribu-
tion into pure competitive analysis to study on-line leasing problem, while they
suppose that input sequences are drawn form the exponential distribution [6].
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2 Our Contributions

The purpose of this study is to improve the performance measure of competitive
analysis by integrating distribution information into pure competitive analysis
for the leasing problem. Similar to the results in [6], we also obtain several in-
teresting results as follows. If the average cost of always leasing is less than the
purchasing cost, the optimal strategy for an investor is to lease the equipment
forever. Otherwise, the optimal strategy is to purchase the equipment after leas-
ing several periods, which the optimal purchasing data would be determined by
using the dichotomous search algorithm in the polynomial time. Furthermore,
we introduce the nominal interest rate on the market into the model. It could be
found that the introducing of interest rate would diminish uncertainty involved
in the process of decision making and put off the purchasing date. Although this
is only one step toward a more realistic solution of the problem, the introduction
of this parameter considerably complicates the analysis and also arises some new
issues that do not exist in the Fujiwara’s model with no interest rate.

Moveover, the reasons based on such consideration are as follows. Pure com-
petitive analysis always assumes that an investor has no information for input
sequences. Indeed, whenever a decision-maker does have some side information
or partial (statistical) knowledge on the evolution of input sequences it would be
a terrible waste to ignore it, which is precisely what the competitive ratio does.
In this case the use of competitive algorithms may lead to inferior performance
relative to Bayesian algorithms. Moreover, it is hardly true that competitive
analysis of the worst case intentionally emphasizes on difficulty to estimate the
input distribution. Other than many combinatorial problems with more com-
plicated input structures, there do exist a number of interesting problems with
relatively simple and tractable input structures. We can characterize accurately
their input structures by using statistical theory. Hence, stochastic competitive
analysis in this paper, as well as in [6], might help to overcome these difficulties.

The reason that we consider the on-line rental problem with geometric dis-
tribution comes from the literature [10] which analyzes a class of optimal stop-
ping of geometric distribution and from the “tossing coin” idea that the leasing
doesn’t cease until the purchasing appears. However, the literature [6] highlights
the continuous model with the exponential distribution, while we study a discrete
model that assumes the evolution of input sequences subject to the characteris-
tic of geometric distribution. Maybe, we could also amend several aspects of the
literature [6] as follows. (i) The continuous model could be unnecessarily equiv-
alent to the discrete case because the leasing problem is essentially discrete; (ii)
Geometric distribution may be more reasonable than exponential distribution
to depict input structures of the leasing problem, because the leasing activity
every period is similar to doing the Bernoulli trial what on earth to rent contin-
uously or to purchase immediately; (iii) In our discrete model, the immediately
purchasing at the beginning, i.e. the strategy A(0), could be also an optimal
strategy in practice, and the competitive ratio C(0) is a finite value, while it
could be not the case that the literature [6] pointed out the competitive ratio
c(k) diverging to +∞ as k approaching to zero.
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3 Optimal Analysis of Online Algorithms

For on-line problem, we consider the following deterministic on-line strategies
A(k) (k = 0, 1, 2, · · ·): rent up to k times and then buy. Thus let CostON be
the optimal cost of on-line algorithms, and let CostOPT be the optimal cost of
off-line algorithms. In this paper, we consider the discrete model. Therefore the
conception of the stochastic competitive ratio is defined as follows.
Definition 1. Let the number of the leasing be a stochastic variable X which
is subject to some type of probability distribution, and the probability function
is P (X = t), where t is the number of actual leasing. Then the discrete stochastic
competitive ratio is defined as

C(k) = EX
CostON (X, k)
CostOPT (X)

=
∞∑

t=0

CostON (t, k)
CostOPT (t)

P (X = t), (1)

where P (X = t) is a probability function that investors approximately estimate
for input structures. We consider that the inputs are drawn from the geometric
distribution, and let the hazard rate of continuous renting in every period ac-
tivity be θ, and then the probability function is P (X = t) = (1 − θ)θt−1 (t =
0, 1, 2, 3, · · ·).

Note that there is an essential difference of definitions between the stochastic
competitive ratio in this paper and the randomized competitive ratio in the
literature [9], [4]. The former indicates that input structure may be subject to
some probability distribution, i.e. investor has certain information distribution,
while the latter means that on-line players or adversary players choose some
strategy randomly in the strategy space set. Thereby we use different terms to
imply different meanings.

3.1 Leasing in a Market Without Interest Rate

Let the costs of renting and purchasing equipment be 1 and positive integer s,
respectively. Obviously, optimal off-line decision-making cost is

CostOPT (t) = min{s, t}. (2)

Based on the strategy set A(k), on-line decision-making cost is

CostON (t, k) =
{

t t ≤ k,
k + s t > k.

(3)

Obviously, the optimal strategy is immediately purchasing if s were equal to
1, so s is at least 2. We also make the assumption that the player needs the
equipment throughout n contiguous time periods.

According to (1), (2), and (3), we could obtain that, for k=0, 1, 2, 3, · · ·, s,

C(k) = (1 − θk) + (k + s)(1 − θ)
s∑

t=k+1

1
t
θt−1 +

k + s

s
θs, (4)
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and for k = s + 1, s + 2, s + 3, · · ·,

C(k) = (1 − θs) +
1 − θ

s

k∑

t=s+1

tθt−1 +
k + s

s
θk. (5)

Then we obtain the following result by theoretical analysis.
Theorem 1. 1). If 1

1−θ < s, then the average cost of always leasing is less
than the purchasing cost s. The optimal strategy for an investor is to lease the
equipment forever, and the competitive ratio is 1 + θs

s(1−θ) ;
2). If 1

1−θ = s, then the average cost of always leasing is equal to the pur-
chasing cost s. The optimal strategy for an investor is to purchase the equipment
after leasing s − 1 periods, and the competitive ratio is 1 + (1 − 1

s )s;
3). If 1

1−θ > s, then the average cost of always leasing is greater than the pur-
chasing cost s. The optimal strategy for an investor is to purchase the equipment
after leasing k0 periods, and the competitive ratio is 1−[1− k0s(1−θ)

k0+1 − s2(1−θ)
k0+1 ]θk0 ,

where k0 satisfies (1 − θ)s2 − 0.09s − 1 < k0 < (1 − θ)s2 − 1, which the decision-
making data k0 must be determined by using the dichotomous search algorithm
in the polynomial time O(log s);

4). If 1
1−θ → ∞, then the average cost of always leasing limits to ∞, and the

optimal competitive ratio of any strategy A(k) is 1 + k
s . The optimal strategy

for an investor is to purchase the equipment at the very beginning, and the
competitive ratio approaches to 1.

Whichever case to consider, the competitive ratio that the investor takes the
strategy A(s − 1), even when there is a large deviation for the hazard ratio θ to
be estimated, also is better than the deterministic competitive ratio 2− 1

s in [9],
and the randomized competitive ratio in [4]. For example, if s = 10 and θ = 0.95,
then the competitive ratio 1.56722 in this paper is better than the competitive
ratio 1.9 in [9], and better than the randomized competitive ratio 1.582 in [4].

3.2 Leasing in a Market with Interest Rate

When considering alternative financial decisions, an agent must consider their
net present value, that is, accounting for the market interest rate is an essential
feature of any reasonable financial model. Hence, let i be the nominal interest
rate in the financial market. Without loss of generality we assume that 1

s > i
1+i .

This is a reasonable assumption for any practical use because the purchase price
of the equipment must be less than the present discount value of the alternative
of always leasing (s <

∑∞
j=0

1
(1+i)j ). Otherwise, the online player can attain a

competitive ratio of 1 by simply never purchasing the equipment. Set β = 1
1+i ,

and then 1
s + β − 1 > 0. From economic point of view, 1

s + β − 1 is relative
opportunity cost to purchase equipment. In addition, let � = ( 1

s + β − 1)−1.
Clearly, the adversary player will never purchase the equipment after leasing

it for some time (as in [4]). Therefore, for any n optimal offline decision-making
cost is
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CostOPT (t) =

{
1−βt

1−β t ≤ n∗,
s t > n∗,

(6)

where n∗ is the number of rentals whose total present value is s. In other words,
n∗ is the root of 1−βn

1−β = s. That is n∗ = ln(1−s(1−β))
ln β . Based on the strategy set

A(k), on-line decision-making cost is

CostON (t, k) =

{
1−βt

1−β t ≤ k,

sβk + 1−βk

1−β t > k.
(7)

According to (1), (6), and (7), we could obtain that, for k=0, 1, 2, 3, · · ·, n∗,

C(k) = (1−θk)+(1−θ)(1−βn∗+k)
n∗∑

t=k+1

1
1 − βt

θt−1 +(βk +
1 − βk

s(1 − β)
)θn∗

, (8)

and for k = n∗ + 1, n∗ + 2, n∗ + 3, · · ·,

C(k) = (1 − θn∗
) +

1 − θ

s(1 − β)

k∑

t=n∗+1

(1 − βt)θt−1 + (βk +
1 − βk

s(1 − β)
)θk. (9)

Then we obtain the following result by theoretical analysis.
Theorem 2. 1). If 1

1−θ < �
1+i , then the average cost of always leasing without

interest rate is less than the present discount value of the reciprocal of relative
opportunity cost. The optimal strategy for an investor is to lease the equipment
forever, and the competitive ratio is 1 + 1+β(1−2θ)

�(1−β)(1−βθ)θ
n∗

;

2). If 1
1−θ = �

1+i , then the average cost of always leasing without interest rate
is equal to the present discount value of the reciprocal of relative opportunity
cost. The optimal strategy for an investor is to buy the equipment after n∗ − 1
periods, and the competitive ratio is 1 + ( θ

1+i )
n∗

;
3). If 1

1−θ > �
1+i , then the average cost of always leasing without interest rate

is greater than the present discount value of the reciprocal of relative opportu-
nity cost. The optimal strategy for an investor is to buy the equipment after
k0 periods, and the competitive ratio is 1 + sβ(1−θ)(1−βn∗+k0 )−βn∗

(1−βk0+1)
βn∗ (1−βk0+1) θk0 ,

where the decision-making data k0 is established by using the dichotomous search
algorithm in the polynomial time O(log n∗);

4). If 1
1−θ → ∞, i.e. the average cost of always leasing without interest

rate limits to +∞, then the optimal competitive ratio of any strategy A(k) is
1

s(1−β) + (1 − 1
s(1−β) )β

k. The optimal strategy for an investor is to purchase the
equipment at the very beginning, and the competitive ratio approaches to 1.

Note that Theorem 2 is the further extension of Theorem 1. If i → 0, then
n∗ → s, and �

1+i → s. Similar to Theorem 1, if s = 10, and θ = 0.95, and
i = 0.01, then the competitive ratio of non-optimal strategy A(9) that is 1.4983
is better than the competitive ratio 1.9 in [9], and better than the randomized
competitive ratio 1.582 in [4], and better than the stochastic competitive ratio
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1.56722 without interest rate. Moreover, it could be found that the entrance of
interest rate diminishes uncertainty involved in financial decision making and
puts off optimal purchasing date. For example, if s = 19 and θ = 0.98, the
introducing of interest rate i = 0.02 results in that the competitive ratio reduces,
and that the optimal strategy A(6) with no interest rate is postponed to become
the optimal strategy A(11) with interest rate.

4 Concluding Remarks

Although Ran El-Yaniv proposed the axiom set of the competitive ratio, the
conception has still inherent and insurmountable limitations [3]. It is still the
subject of worthy attention how to improve the performance measure of the
competitive ratio by combining other methods. Furthermore, it also is the subject
of research how to depict input information under uncertainty, while we think
that the theory of Rough set and possibility distribution may be an useful tool to
be integrated into pure competitive analysis to improve the performance measure
of on-line algorithms in the future.
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